

Конденсаторы	
ЧИП керамические конденсаторы для общего применения	_ 3
ЧИП керамические конденсаторы для автопрома	11
Выводные керамические конденсаторы общего применения	15
Выводные керамические конденсаторы для автопрома	19
Высоковольтные керамические конденсаторы	21
Полимерные алюминиевые конденсаторы 21 Подстроечные конденсаторы .	22

Подавление ЭМП/Фильтры ЭМП

 Фильтры подавления ЭМП (ЧИП ферритовые бусины)
 23

 Фильтры подавления ЭМП (3-выводные конденсаторы)
 24

 Фильтры подавления ЭМП (ЧИП LC/RC фильтры)
 25

 Фильтры подавления ЭМП (ЧИП EMIFIL)
 25

 Фильтры подавления ЭМП (синфазные фильтры)
 26

 Фильтры подавления ЭМП (блоки)
 27

 Устройства защиты ESD
 27
 Фильтры подавления ЭМП (выводные), прочие
 28

Индуктивности (дроссели)

Резисторы

 Высоковольтные резисторы
 34

 Потенциометры
 35

Компоненты синхронизации

 Кварцевые резонаторы
 37

 Кварцевые генераторы
 38

 Керамические резонаторы CERALOCK
 39

Фильтры для звуковизуального оборудования

 Керамические фильтры CERAFIL
 41

 Керамические контуры
 43

 Керамические дискриминаторы
 43

 ПАВ контуры
 43

Фильтры для аппаратуры связи

 ПАВ фильтры для мобильных устройств
 44

 Диэлектрические фильтры GIGAFIL
 45

 ЧИП LC фильтры
 46

 Керамические фильтры CERAFIL
 46

 Керамические дискриминаторы
 48

 Кварцевые фильтры
 48

РЧ компоненты

Изоляторы	49	ЧИП диплексеры	51
Балуны	50	ВЧ коаксиальные разъемы	52
Согласующие элементы	50	Однослойные конденсаторы	53
ЧИП гибридные делители	51	Тонкопленочные подложки RUSUB	55

p2

p23

p49

p56

p77

	>
	00
p56	2

Датчики			
Пироэлектрические ИК датчики	_ 58	Акселерометры	57
УЗ датчики	_ 58	Инклинометры	58
Датчики поворота	_ 58	Гироскопы	57
Датчики банкнот	_ 56	Поворотные датчики положения	57
Магнитные ключи (AMR)	_ 57	Термисторы	56
Датчики удара	_ 58		

-				
Te	рм	ИС	TO	ры

NTC термисторы (для датчиков температуры/термокомпенсации)	60
NTC термисторы (защита от токовых выбросов)	62
РТС термисторы POSISTOR (защита от перегрева)	62
РТС термисторы POSISTOR (защита от бросков тока)	63
РТС термисторы POSISTOR (защита по току)	64

Источники питания

Микро DC-DC преобразователи	65
DC-DC преобразователи	66
Высоковольтные трансформаторы	68
Высоковольтные источники питания	68
Лмпульсные источники питания	69
Лонисторы	69

Акустические компоненты

Пьезоэлектрические излучатели	C
Пьезоэлектрические зуммеры7	1
Пьезоэлектрические диафрагмы7	1

Прочее

Микромехатроника	72
Модули беспроводной связи	73
Керамические компоненты	73
Модули ионизатора lonissimo	74
Переменные конденсаторы	74

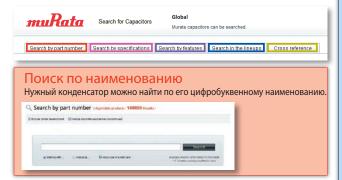
FRID устройства	75
Беспроводные модули передачи энергии .	76

Информация по применению

C 1		**	
Смартфоны		Многофункциональные принтеры	104
Носимые устройства	80	Телевизоры	106
Базовые станции	82	Декодеры	108
G-PON	84	Умный дом	110
Центры обработки данных	85	Умные счетчики	112
Автоэлектроника		Термостаты	114
Трансмиссия/Безопасность	86	Датчики движения	115
Гибридные электромобили	88	Распылители	116
Информация/Комфорт	89	Термометры	117
Велосипеды/Электромобили	90	Тонометры	118
Кондиционеры воздуха	92	Глюкометры	119
Холодильные установки	94	Диагностическое визуальное оборудование	120
Стиральные машины	95	Освещение	121
Очистители воздуха	96	Камеры видеонаблюдения	122
Микроволновые печи	97	Системы контроля доступа	124
Рисоварки	98	Электронные точки обслуживания	125
Вакуумные очистители	99	Грузовой транспорт	126
Планшетные ПК	100	Промышленная автоматизация	128
Ноутбуки	102	3D принтеры	

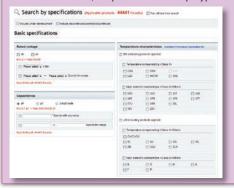
Конденсаторы

Самая широкая линейка продукции на рынке, предлагающая идеальные решения и удовлетворяющая требованиям любых разработок


Обзор

Применение уникальных материалов позволяет компании Murata выпускать самую полную линейку конденсаторов с широким диапазоном рабочих напряжений. Кроме того, Murata предлагает наборы конденсаторов и программное обеспечение для эмуляции схем с применением конденсаторов.

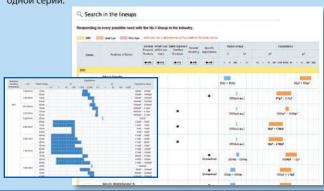
Продукция


- Керамические конденсаторы (SMD, выводные, штампованные)
- Полимерные алюминиевые конденсаторы
- Керамические подстроечные конденсаторы
- Ионисторы

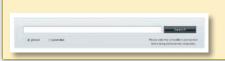
Онлайн поиск

Поиск по параметрам

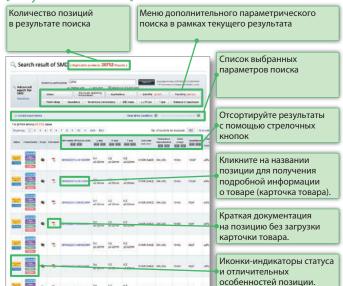
Конденсаторы можно найти по основным характеристикам, таким как емкость, напряжение и температурные характеристики.


Поиск по особенностям

Конденсатор можно найти по его форме, максимальной рабочей температуре, области применения, монтажу и др.


Поиск по серии

Конденсаторы можно выбрать из списка всех наименований одной серии.

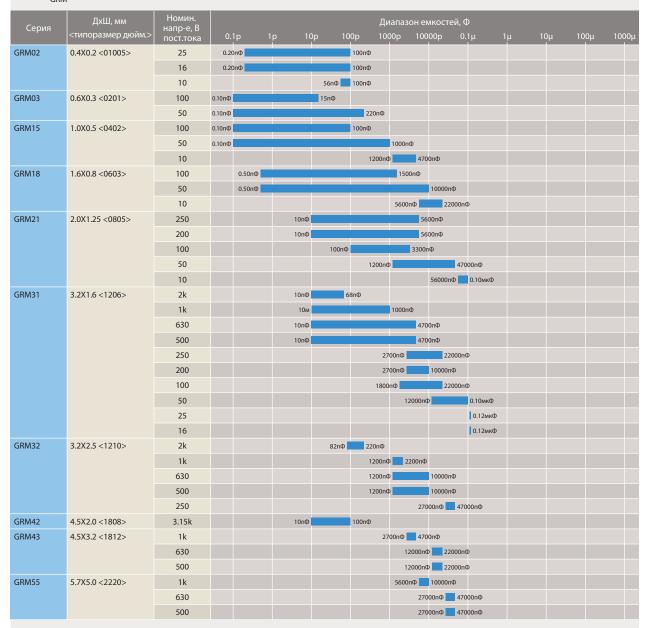


Cross reference

Наименование конденсатора Murata можно найти по аналогичной модели конденсатора другого производителя.

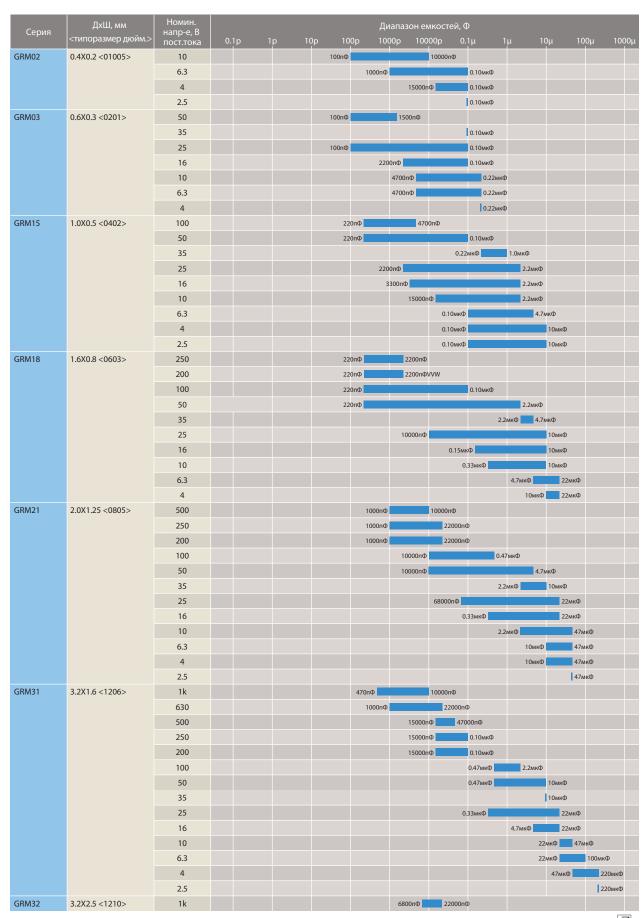
[Результаты поиска]

ЧИП керамические конденсаторы


Для общего применения

Для общего применения

(Термокомпенсирующие конденсаторы


GRM

(Конденсаторы с высокой диэлектрической проницаемостью

Серия	ДхШ, мм	Номин. напр-е, В	Диапазон емкостеи, Ψ									
ССРИИ	<типоразмер дюйм.>	пост.тока	0.1p		10p	100p	1000p	10000p	0.1μ	10μ	100μ	1000μ
GRM02	0.4X0.2 <01005>	16				100пФ	1000r	ιΦ				

Низкоиндуктивные конденсаторы (с низким ESL)

(С широкими контактными площадками

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.1	р	1p	10p	100p	Диапа: 1000р	зон емкос 10000р	тей, Ф 0.1µ	1μ	10μ	100μ	1000μ
LLL15	0.5X1.0 <0204>	6.3							0	.10мкФ 0.2	2мкФ			
		4								0.47мкФ	1.0мкФ			
LLL18	0.8X1.6 <0306>	50						2200пФ	4700пФ					
		25						10	0000пФ	22000пФ				
		16							22000пФ	47000пФ				
		10							0	.10мкФ 0.2	2мкФ			
		4								0.22мкФ	2.2мк	Ď		
LLL1U	0.6X1.0 <02404>	4									4.	ЗмкФ		
LLL21	1.25X2.0 <0508>	50						10	0000пФ	22000пФ				
		25							22000пФ	0.10мк0				
		16							47000	пФ 0.2	2мкФ			
		10								0.22мкФ	1.0мкФ			
		6.3									0.47мкФ			
		4								1.0	мкФ 2.2 мк	Ď		
LLL31	1.6X3.2 <0612>	50						10	Фп0000	0.10мкФ)			
		25							47000	пФ	0.47мкФ			
		16								0.22мкФ	1.0мкФ			
		10								0.47мкФ	2.2мк	D		
		6.3									2.2мкФ	10мкФ		

Продолжение на следующей странице.

(С управляемым ESR

LLR

Серия	ДхШ, мм	Номин. напр-е, В				Диапаз	он емкост	ей, Ф				
ССРИЛ	<типоразмер дюйм.>		0.1p	10p	100p	1000p	10000p	0.1μ		10μ	100μ	1000μ
LLR18	0.8X1.6 <0306>	4							1.0мк	D		

(8-выводные

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.	1p	1p	10p	100p	Диапа 1000р		икостей, 00р 0	Φ .1μ	1μ 1	0μ	100μ	ı 10	00μ
LLA18	1.6X0.8 <0603>	4								0.10мкФ		2.2мкФ				
LLA21	2.0X1.25 <0805>	25						1	Фп0000	47	000пФ					
		16								47000пФ	0.22мк	кΦ				
		10								0.2	2мкФ 0.	47мкФ				
		6.3									0.47мкФ	1.0мкФ				
		4									1.0мк	Ф 4.7	мкФ			
LLA31	3.2X1.6 <1206>	16								0.2	2мкФ	1.0мкФ				
		10									0.47мкФ	2.2мкФ				
		6.3									1.0мк	Ф 2.2мкФ				

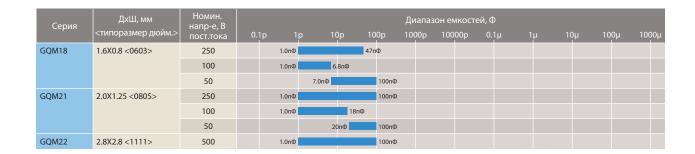
(10-выводные

LLM

Серия	ДхШ, мм	Номин. напр-е, В					Д	иапазон е	мкостей, ^С					
ссрии	<типоразмер дюйм.>	пост.тока	0.1	lp 1	lp 1	0p 10	00p 10	00p 10	000p 0.	1μ 1	μ 10	ρμ 10	0μ 100	00μ
LLM21	2.0X1.25 <0805>	6.3							0.22	мкФ 0.47	7мкФ			
		4									1.0мкФ			
LLM31	3.2X1.6 <1206>	16							0.10мкФ	0.22мкФ				
		10								0.47	7мкФ			
		6.3									2.2мкФ			

Высокодобротные ВЧ конденсаторы

GJM


Серия	ДхШ, мм	Номин. напр-е, В					Диапаз	вон емкост	ей, Ф				
ССРИИ	<типоразмер дюйм.>	пост.тока	0.1p	1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
GJM02	0.4X0.2 <01005>	25	0.20пФ		220	ιΦ							
GJM03	0.6X0.3 <0201>	25	0.20пФ		3	3пФ							
GJM15	1.0X0.5 <0402>	50	0.10пФ			47пФ							

Высокодобротные конденсаторы для ВЧ и силовых цепей

GQM

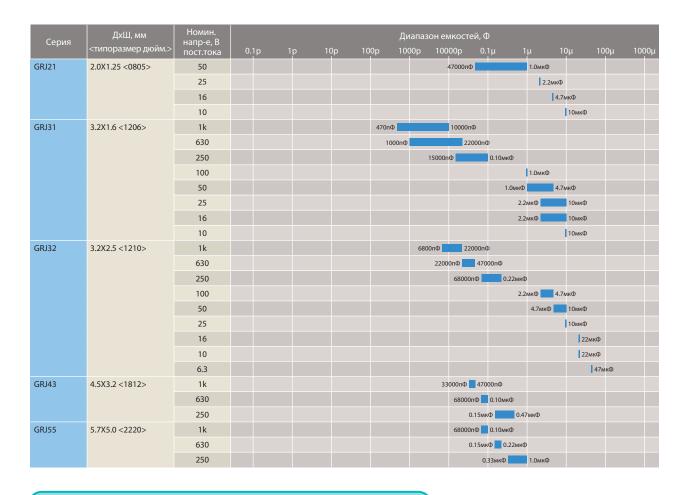
Серия	ДхШ, мм	Номин. напр-е, В					Диапаз	он емкост	ей, Ф			
	<типоразмер дюйм.>	пост.тока	0.1	р 1р	10p	100p	1000p	10000p	0.1μ	10μ	100μ	1000μ
GQM15	1.0X0.5 <0402>	200	0.10пФ			33пФ						
		100			36π	⊅ ■ 47пФ						

Конденсаторы для вклейки/Au/Sn пайки

GIVI	U												
Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.	1p	10p	100p	Диапаз 1000р	он емкос 10000р	тей, Φ		10μ	100μ	1000μ
GMD03	0.6X0.3 <0201>	25				100пФ	150	Φη00					
		16					1800пФ	3300пФ					
		10					3900п	10000	ОпФ				
		6.3						56000	0.10мк	Ď			
GMD15	1.0X0.5 <0402>	50				220пФ		4700пФ					
		25					5600	ОпФ	47000пФ				
		16						56000	0.10мк	D			
		10							0.12мкФ	0.47мкФ			

Конденсаторы для монтажа перемычками

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.1	p 1	p 1	0p 100			н емкосте 10000р	й, Ф 0.1μ	1μ	10μ	100μ	1000μ
GMA05	0.5X0.5 <0202>	100				100пФ		1000пФ						
		25					1500n0	D	4700пФ					
		10						6800n0	Ф 220	00пФ				
		6.3								0.10мкФ				
GMA08	0.8X0.8 <0303>	100					1500n0	Ф	6800пФ					
		25						10000M	ипФ 220	00пФ				
		10							33000пФ	0.10мкФ				
		6.3								0.	47мкФ			
GMA0D	0.38X0.38 <015015>	10					1000пФ		10000n¢					

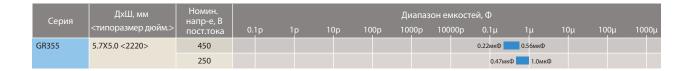

Конденсаторы с эпоксидным покрытием электродов

Серия	ДхШ, мм	Номин. напр-е, В					Ди	1апазон ем	икостей, ()				
ССРИИ	<типоразмер дюйм.>	пост.тока	0.1	p 1 _F) 10)p 10	00p 100	00p 100	000p 0.	1μ 1	μ 1	0μ 1	00μ	1000μ
GRJ18	1.6X0.8 < 0603 >	100					1000пФ			0.10мкФ				
		50					1000пФ			0.22мкФ				
		25							47000пФ		1.0мкФ			
		16								0.47	мкФF			
		6.3								2.2	мкФ 4.7	мкФ		
GRJ21	2.0X1.25 <0805>	250					1000пФ		22000n0					
		100							47000пФ	0.10мкФ				

Продолжение на следующей странице.

Для инвертеров подсветки ЖКИ 1 GRM

Серия	ДхШ, мм	Номин. напр-е, В					Диапаз	он емкост	ей, Ф				
серии	<типоразмер дюйм.>	пост.тока	0.1p	1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
GRM42	4.5X2.0 <1808>	3.15k		5.0r	Ф	47пФ							


Высокоемкостные со стойкостью к току пульсаций

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.1p) 1 _j	o 1	0p	100p	Диапа: 1000р	зон ем 1000	ікостей, ()0р 0.) 1μ	1μ	10μ	10	00μ	1000μ
GR321	2.0X1.25 <0805>	250						10	Фп0000	22000n0	þ					
GR331	3.2X1.6 <1206>	630						10	Фп0000	15000пФ						
		450						10	Фп0000	470	Фп00					
		250							330	000пФ 6	8000пФ					
GR332	3.2X2.5 <1210>	630							22000	ЭпФ 470	Фп00					
		450								68000пФ	0.10мкФ					
		250								0.10мкФ	0.15мк0	D				
GR343	4.5X3.2 <1812>	630								6	8000пФ					
		450									0.15мк	Þ				
		250								0.22	мкФ 0.3	3мкФ				
GR355	5.7X5.0 <2220>	630								0.10мкФ	0.27	мкФ				

Продолжение на следующей странице.

Для Ethernet, LAN и цепей развязки DC-DC конвертеров

GR4

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.	1p 1	p 1	0p 1		иапазс 000р	н емкосто 10000р	ей, Ф 0.1µ	1,)μ 1	Ι00μ	1000μ
GR442	4.5X2.0 <1808>	2k				100пФ		1500	пФ					
GR443	4.5X3.2 <1812>	2k					180	0пФ	4700пФ					
GR455	5.7X5.0 <2220>	2k							10000n	Ф				

Для вспышек фотокамер

GR7

Серия	ДхШ, мм	Номин. напр-е, В					Диапаз	он емкост	ей, Ф				
ССРИЛ	<типоразмер дюйм.>	пост.тока	0.1p	1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
GR721	2.0X1.25 <0805>	350					10	000пФ	27000пФ				
GR731	3.2X1.6 <1206>	350					10	000пФ	47000пФ				

Помехоподавляющие конденсаторы

сСтандарт Electrical Appliance and Material Safety Law of Japan

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.	lp 1	p 10)p 10			емкостей, 0000р (Φ	1μ 10)μ 10	00μ 1	Ι000μ
GA242	4.5X2.0 <1808>	AC250 (r.m.s.)					470пФ	1000пФ						
GA243	4.5X3.2 <1812>	AC250 (r.m.s.)					22	00пФ	47	000пФ				
GA255	5.7X5.0 <2220>	AC250 (r.m.s.)								0.10мкФ				

_сТип GF, класс Y2, X1/Y2 по EC60384-14

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.1	p 10)p 100		апазон)0р 1(емкост 0000р	ей, Φ 0.1μ	10μ	100μ	1000μ
GA342	4.5X2.0 <1808>	AC250 (r.m.s.)		10пФ			1000пФ					
GA352	5.7X2.8 <2211>	AC250 (r.m.s.)			100пФ		1500пФ					
GA355	5.7X5.0 <2220>	AC250 (r.m.s.)				1800	пФ 4	1700пФ				

(Тип G класса Y3 по EC60384-14

Серия	ДхШ, мм	Номин. напр-е, В				Диапа:	вон емкост	ей, Ф			
ССРИИ	<типоразмер дюйм.>		0.1p	10p	100p	1000p	10000р	0.1μ	10μ	100μ	1000μ
GA342	4.5X2.0 <1808>	AC250 (r.m.s.)		10пФ		150	Фп00				

9

Конденсаторы с металлическими выводами

(Высокой емкости

KRN

Серия	ДхШ, мм	Номин. напр-е, В					Диа	пазон (емкостей,	Φ				
Серил	Дхш, иш	пост.тока	0.1		10p	100p	1000	p 10	0000p 0		Ιμ 10	0μ 1	00μ	1000μ
KRM21	2.2X1.25	25									10мкФ	22мкФ		
		16										10мкФ		
KRM31	3.5X1.7	100									1.0мкФ			
		50									4.71	икФ		
		35										10мкФ		
		25										10мкФ		
	3.6X1.7	50									2.2мкФ			
	3.7X1.85	100									2.2мкФ			
KRM55	6.1X5.3	1k							68000пФ	0.22мк0	Þ			
		630							0.15 _N	кФ 0.4	7мкФ			
		250								0.68мкФ	2.2мкФ			
		100									4.7мкФ	15мкФ		
		63									4.7мкФ	22мкФ		
		50									4.7мкФ	33м	кФ	
		35									10мкФ	47	'мкФ	
		25									15мн	Ф	68мкФ	

(Конденсаторы высокой емкости и стойкие к пульсациям

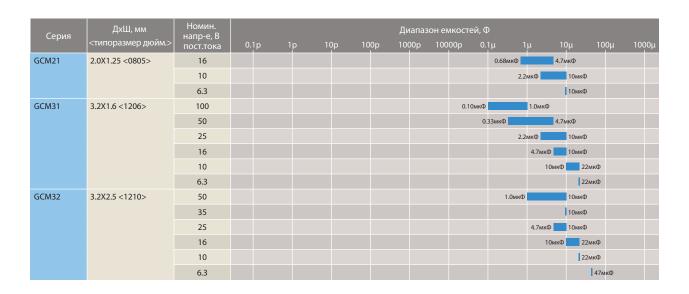
Серия	ДхШ, мм	Номин. напр-е, В пост.тока	0.1	p 1	p 10)p 10		мкостей, ^С	D 1μ 1	μ 10)μ 10	1000μ
KR355	6.1X5.3	630						0.10мкФ	0.5	6мкФ		
		450						0.22	мкФ	1.2мкФ		
		250							0.47мкФ	2.2мкФ		

Керамические ЧИП конденсаторы

Для автопрома

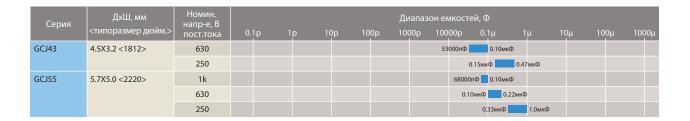
Для автопрома (общего применения)

(Термокомпенсирующие конденсаторы


Conus	ДхШ, мм	Номин. напр-е, В					Ди	иапазон е	мкостє	ей, Φ			
Серия	<типоразмер дюйм.>	напр-е, в пост.тока	0.1		10	o 10	0p 10	00p 100	000р	0.1μ	10μ	100μ	1000μ
GCM03	0.6X0.3 <0201>	25		1.0пФ			100пФ						
GCM15	1.0X0.5 <0402>	50		1.0пФ			470	Фп					
GCM18	1.6X0.8 < 0603 >	100		1.0пФ				1500пФ					
		50		1.0пФ				390	0пФ				
GCM21	2.0X1.25 <0805>	250				100пФ		56	500пФ				
		100				100пФ		3300	пΦ				
		80						15000	пФ 220	000пФ			
		63						15000	пФ 220	000пФ			
		50					1000пФ		220	000пФ			
GCM31	3.2X1.6 <1206>	1k			10пФ			1000пФ					
		630			10пФ			470	00пФ				
		250					27	00пФ	10000п	D			
		100					1800	ΦηΦ	10000п	Ф			
		80							13	33000пФ			
		63							13	33000пФ			
		50						3900пФ		56000пФ			
GCM32	3.2X2.5 <1210>	1k					1200n0	2200n¢					
		630					1200n0		10000п	Ф			
GCM43	4.5X3.2 <1812>	1k					27	700пФ 📉 470	Фп00				
		630						12000n	Ф 220	000пФ			
GCM55	5.7X5.0 <2220>	1k						5600пФ	10000n	Ф			
		630						27	000пФ	47000пФ			

(Конденсаторы с высокой диэлектрической проницаемостью

Серия	ДхШ, мм	Номин. напр-е, В									икостей,					
	<типоразмер дюйм.>	пост.тока	0.	1 p	1p	10p	100	Op 10	000p	100	00p ().1μ	1μ 1	0μ	100μ	1000μ
GCM03	0.6X0.3 <0201>	25					100пФ		150	Фп00						
		16						22	00пФ	3300r	Ф					
		10							4700r	пФ	10000пФ					
GCM15	1.0X0.5 <0402>	100					220	ОпΦ		470	0пФ					
		50					220	ОпΦ				0.10мкФ				
		25							10	Фп0000	47	000пФ				
		16								33	000пФ	0.22мк	Φ			
		10											1.0мкФ			
GCM18	1.6X0.8 < 0603 >	100						1000n¢			220001	ιΦ				
		50						1000n¢				0.22мк	Φ			
		25								33	000пФ		1.0мкФ			
		16									0.10мк		1.0мкФ			
		6.3											2.2мкФ			
GCM21	2.0X1.25 <0805>	100							680	00пФ		0.10мкФ				
		50								33	000пФ		1.0мкФ			
		35										0.68мкФ	4.7	мкФ		
		25									0.15	икФ	4.7	мкФ		


Продолжение на следующей странице.

Конденсаторы с эпоксидным покрытием электродов

_	ДхШ, мм	Номин.				Лиа	апазон емкосте	ий Ф			
Серия	<типоразмер дюйм.>	напр-е, В пост.тока	0.1p	1p	10p	100p 1000		ν, Ψ 0.1μ	1μ 1	0μ 100)μ 1000μ
GCJ18	1.6X0.8 < 0603 >	100				1000пФ		0.10мкФ			
		50				1000пФ		0.22мк	Ф		
		35					33000пФ	68000пФ			
		25				1000пФ			1.0мкФ		
		16					10000пФ	0.4	17мкФ		
		10					0.1	2мкФ 0.22мк	Ф		
		6.3							2.2мкФ		
GCJ21	2.0X1.25 <0805>	250				1000пФ	22	000пФ			
		100				220пФ		0.10мкФ			
		50				330пФ			1.0мкФ		
		35					0.1	2мкФ 0.4	17мкФ		
		25				470пФ			2.2мкФ		
		16						0.27мкФ	4.7	мкФ	
		10						2.	2мкФ	10мкФ	
GCJ31	3.2X1.6 <1206>	1k				1000пФ	10000n	Ď			
		630				1000пФ	22	Фп000			
		250					15000пФ	0.10мкФ			
		100						мкФ			
		50					0.10	мкФ	4.7	мкФ	
		35						0.56мкФ	1.0мкФ		
		25					0.10	мкФ		10мкФ	
		16						1.0мк		10мкФ	
		10							6.8мкФ	22мкФ	
		6.3								22мкФ	
GCJ32	3.2X2.5 <1210>	1k					15000nΦ 22				
		630					6800пФ				
		250					68000	ιΦ 0.22мк			
		100							2.2мкФ		
		50							4.7мкФ		
		25							4.7		
		16								22мкФ	
		6.3								47мк	Φ
GCJ43	4.5X3.2 <1812>	1k					33000пФ	47000пФ			

Конденсаторы для предотвращения КЗ

GCD

Серия	ДхШ, мм	Номин. напр-е, В					Д	иапазон е	емкостей,					
ССРИИ	<типоразмер дюйм.>	пост.тока	0.1	p 1	p 1	0p 1	100p 10	00p 10	0000p	0.1μ	1μ	10μ	100μ	1000μ
GCD18	1.6X0.8 < 0603 >	100					1000n¢		22000	пФ				
		50					1000n¢		22000	пФ				
		25						27	7000пФ 4	7000пФ				
GCD21	2.0X1.25 <0805>	100					1000n¢			0.10мкФ				
		50					1000n¢			0.10мкФ				

Для предотвращения К3 с прорезиненным электродом

 Серия
 ДхШ, мм
<типоразмер дюйм.>
 Номин. напр-е, В пост.тока
 Диапазон емкостей, Ф пост.тока

 GCE18
 1.6X0.8 <0603>
 100
 1000nф
 22000nф

 50
 1000nф
 22000nф

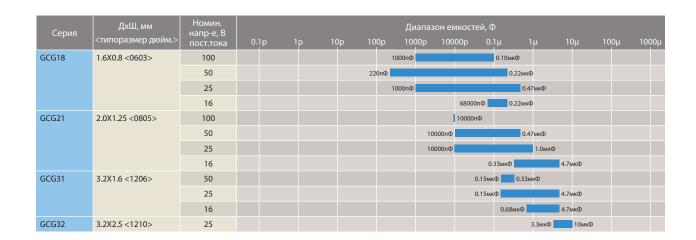
 25
 27000nф
 47000nф

 GCE21
 2.0X1.25 <0805>
 100

Конденсаторы для монтажа на токопроводящий клей

«Термокомпенсирующие конденсаторы

GCG


Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.1	p 1	p 10)p 10	Диа 0р 1000		мкостей, 100р 0	Φ .1μ 1	Ιμ 1	0μ 1	00μ 1	000μ
GCG15	1.0X0.5 <0402>	50				120nd	470n	Φ						
GCG18	1.6X0.8 < 0603 >	50			10пФ			2200пФ						
GCG21	2.0X1.25 <0805>	50				100пФ			10000пФ					

(Конденсаторы с высокой диэлектрической проницаемостью

GCG

Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В пост.тока	0.1p	o 1	p 1	0p 10		Диапаз 1000р	он емкостеі 10000р	í, Φ 0.1μ	1μ	10μ	100μ	1000μ
GCG15	1.0X0.5 <0402>	50				2:	20пФ		4700пФ					
		25						5600r	10000пФ					
		16						1	5000пФ	0.10мкФ				

Конденсаторы высокой емкости со стойкостью к пульсациям

GC.	,														
Серия	ДхШ, мм <типоразмер дюйм.>	Номин. напр-е, В	0.15	10	10)p 1	00p	Диапаз	он емк 10000	костей, Ф	D 1μ	1 1	0μ	100μ	1000μ
	CIVITO PUSMICP AIGVINI.	пост.тока	0.1p	1р	10	ρı	ООР	1000р	10000	υρ υ.	ıμ	1μ 1	υμ 	Τυύμ	Τυυυμ
GC321	2.0X1.25 <0805>	250						100	000пФ	22000n0	Þ				
GC331	3.2X1.6 <1206>	630						100	000пФ	15000пФ					
		450						100	000пФ	470	Фп00				
		250							3300	00пФ 6	8000пФ				
GC332	3.2X2.5 <1210>	630							22000n	Ф 470	Фп00				
		450							6	68000пФ	0.10мкФ				
		250								0.10мкФ	0.15мкФ				
GC343	4.5X3.2 <1812>	630								6	8000пФ				
		450									0.15мкФ				
		250								0.22	мкФ 0.33	мкФ			
GC355	5.7X5.0 <2220>	630								0.10мкФ	0.27м	кФ			
		450								0.22	мкФ 0	.56мкФ			
		250									0.47мкФ	1.0мкФ			

Конденсаторы с металлическими выводами

(С высокой емкостью

KC	V

Серия	ДхШ, мм	Номин. напр-е, В				Д	иапазон	н емкостей					
ccp		пост.тока	0.1p	p 1	0p 1	00p 10	000p	10000p	0.1 μ 1	Ιμ 10)μ 10	0μ 10	000μ
KCM55	6.1X5.3	100								4.7мкФ	15мкФ		
		63								4.7мкФ	22мкФ		
		50								4.7мкФ	33мк	Ď	
		35								10мкФ	47n	кФ	
		25								15мк	Ф 6	8мкФ	

Продолжение на следующей странице. 🗖

С высокой емкостью и стойкие к пульсациям

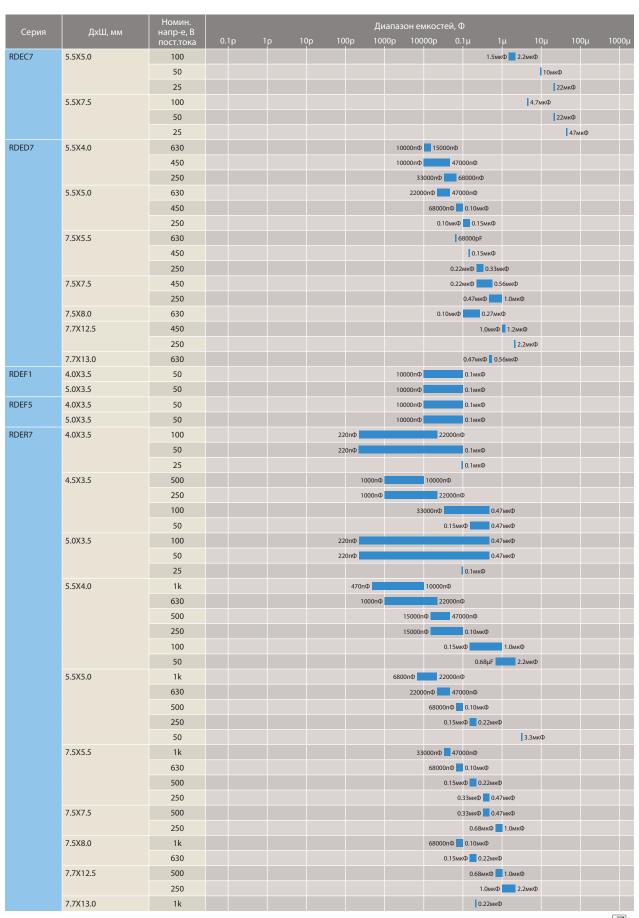
KC3

Серия	ДхШ, мм	Номин. напр-е, В пост.тока	0.1	p 1	p 1	0p 10		мкостей, ()00р 0.		μ 10)μ 10	0μ 100	0μ
KC355	6.1X5.3	630						0.10мкФ	0.5	56мкФ			
		450						0.22	мкФ	1.2мкФ			
		250							0.47мкФ	2.2мкФ			

Выводные керамические конденсаторы Общего применения

С радиальными выводами

сТермокомпенсирующие конденсаторы


Серия	ДхШ, мм	Номин. напр-е, В пост.тока	0.1p	1p 1	0p 100p	Диапазо 1000р	он емкостей, 10000р (Φ).1μ	1μ	10μ	100μ	1000μ
RDE5C	4.0X3.5	100		1.0пФ		1500						
		50		1.0пФ			3900пФ					
	4.5X3.5	100				1800пФ	3300пФ					
		50				4700ng	Ф 22000r	1Ф				
	5.0X3.5	100		1.0пФ			3300пФ					
		50		1.0пФ			22000r	ιФ				
RDE7U	4.5X3.5	250			100пФ		4700пФ					
	5.5X4.0	1k		10n¢		1000ng	Ф					
		630		10пФ			4700пФ					
		250				6800	ЭпФ 22000г	ιФ				
	5.5X5.0	1k				1500пФ 22	200пФ					
		630				6800	0пФ 10000пФ					
		250					33000пФ 47	′000пФ				
	7.5X5.5	1k				3300пФ	4700пФ					
		630				1	15000πΦ 22000r	ιФ				
	7.5X8.0	1k				6800	0пФ 10000пФ					
		630					33000пФ 47	'000пФ				
	7.7X13.0	1k					20000n	Φ				
		630						94000пФ				

сКонденсаторы с высокой диэлектрической проницаемостью

ДхШ, мм напр	ин.				Ді	иапазон ем	ікостей, Ф			
).1p 1	p 1	0p 10	0p 10	00p 1000	00p 0.1	μ 1μ 10	ρμ 100)μ 1000μ
5 2	5						0.22	лкФ 1.0мкФ		
2.	5							2.2мкФ		
5 2.	5						0.22	икΦ 2.2мкΦ		
5)							4.71	икФ	
2	5							4.7мкФ	10мкФ	
	пост.: 5 25 5 25 5 25 0 50	пост.тока С 5 25 5 25 5 25	пост.тока 0.1р 1 5 25 5 25 5 25 5 5 50	пост.тока 0.1р 1р 10 5 25 5 25 5 25 5 50 50	пост.тока 0.1р 1р 10р 10 5 25 5 25 5 25 5 50 50	пост.тока 0.1p 1p 10p 100p 10 5 25 5 25 5 5 5 5 5 5 5 5 5 5 5 5 5	пост.тока 0.1p 1p 10p 100p 1000p 1000 5 25 5 25 5 25 5 5 50	пост.тока 0.1р 1р 10р 100р 1000р 1000р 0.1 5 25 0222 5 25 0222 5 5 5 5 0	пост.тока 0.1p 1p 10p 100p 1000p 1000p 0.1µ 1µ 10 5 25 0.22мкФ 1.0мкФ 1.0мкФ 1.2мкФ 1.2мкФ 2.2мкФ 2.2мкФ 1.2мкФ 1.47мкФ 1	пост.тока 0.1p 1p 10p 100p 1000p 1000p 0.1µ 1µ 10µ 10¢ 5 25 (22мкф) 1.0мкф 5 25 (22мкф) 6 25 7 0.22мкф 2.2мкф 1 2.2мкф 1 4.7мкф

Продолжение на следующей странице. 🖊

Серия	ДхШ, мм	Номин. напр-е, В				Диапаз	он емкост	ей, Ф				
ССРИИ	длш, мімі	пост.тока	0.1p	10p	100p	1000p	10000p	0.1μ		10μ	100μ	1000μ
RDER7	7.7X13.0	630							0.47мкФ			

Дисковые конденсаторы (среднее, высокое напряжение)

DES/DEH/DEA/DEB/DEC

сВысокотемпературные с малыми потерями (низкое теплообразование)

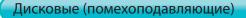
Серия	Диаметр, мм	Номин. напр-е, В				Диапаз	вон емкост	ей, Ф			
ССРИИ	диамстр, ми	пост.тока	0.1p	10p	100p	1000p	10000p	0.1μ	10μ	100μ	1000μ
DESD3	6.0 - 17.0	1k		1	00пФ		4700пФ				
	6.0 - 14.0	500		1	00пФ		4700пФ				

(Высокотемпературные с малыми потерями

Серия	Диаметр, мм	Номин. напр-е, В					Диапаз	зон емкост	ей, Ф				
ССРИИ	диамстр, мм	пост.тока	0.1p) 1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
DEHC3	6.0 - 14.0	500				330пФ		4700пФ					
DEHR3	7.0 - 19.0	3.15k				150пФ		2700пФ					
	7.0 - 21.0	2k				220пФ		4700пФ					
	7.0 - 17.0	1k				220пФ		4700пФ					

сСреднее напряжение (низкое теплообразование для термокомпенсации)

Серия	Диаметр, мм	Номин. напр-е, В				Диапаз	он емкост	ей, Ф			
ССРИИ	диаметр, иш	пост.тока	0.1p	10p	100p	1000p	10000p	0.1μ	10μ	100μ	1000μ
DEA1X	5.0 - 16.0	3.15k		10пФ		390пФ					
	4.5 - 15.0	2k		10пФ		560пФ					
	4.5 - 12.0	1k		10пФ		560пФ					


(Среднее напряжение (высокая диэлектрическая проницаемость)

Серия	Диаметр, мм	Номин. напр-е, В пост.тока	0.1	p 1	p 10)p 10		зон емкоо 10000р		1μ	10μ	100μ	1000μ
DEBB3	5.0 - 15.0	3.15k				100пФ		3300пФ					
	4.5 - 15.0	2k				100пФ		4700пФ					
	4.5 - 15.0	1k				100пФ		6800п0					
DEBE3	7.0 - 13.0	3.15k					1000пФ	4700пФ					
	6.0 - 16.0	2k					1000пФ	1000	0пФ				
	5.0 - 13.0	1k					1000пФ	1000	0пФ				
DEBF3	5.0 - 12.0	2k					1000пФ	1000	0пФ				
	6.0 - 10.0	1k					2200пФ	1000	0пФ				

(Среднее напряжение

Серия	Диаметр, мм	Номин. напр-е, В	0.1=	1	10	10		иапазон є			1	10	100	1000
		пост.тока	0.1p	1p	10	р	0p 10	00p 10	000p	0.1μ	1μ	10μ	100μ	1000μ
DEC1X	7.0 - 15.0	6.3k			10пФ		150пФ							
DECB3	9.0 - 13.0	6.3k				100пФ		1000пФ						
DECE3	11.0 - 15.0	6.3k					1000пФ	2200ng	D					

Дисковые (высоковольтные) для инвертеров подсветки ЖКИ DEF Серия Диаметр, мм Номин. Напр-е, В пост.тока 0.1p 1p 10p 100p 1000p 1000p 0.1µ 1µ 10µ 100µ 1000µ DEF1X 7.0-9.0 6.3k 10nф 47nф

7.0 - 8.0

DEF2C

_сТип КҮ (стандартная изоляция) класса X1/Y2 по IEC60384-14

Серия	Диаметр, мм	Номин. напр-е, В						Диа	пазон є	мкосте	ей, Ф				
ССРИИ	диаметр, им	пост.тока	0.	lp	1р	10p	100p	1000	p 10	000р	0.1μ	1μ	10μ	100μ	1000μ
DE21X	8.0	AC250 (r.m.s.)				10пФ	68пФ								
DE2B3	7.0 - 8.0	AC300 (r.m.s.)					100пФ	680	пФ						
	7.0 - 8.0	AC250 (r.m.s.)					100пФ	680	пФ						
DE2E3	7.0 - 10.0	AC300 (r.m.s.)						1000пФ	47	00пФ					
	7.0 - 10.0	AC250 (r.m.s.)						1000пФ	47	00пФ					
DE2F3	14.0	AC300 (r.m.s.)								10000n	Ф				
	14.0	AC250 (r.m.s.)								10000n	Ф				

_сТип КХ (усиленная изоляция) класса X1/Y2 по IEC60384-14

Серия	Диаметр, мм	Номин. напр-е, В					Диапаз	он емкост	ей, Ф				
Серии	диаметр, иш	пост.тока	0.1	1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
DE11X	9.0	AC250 (r.m.s.)			10пФ	68пФ							
DE1B3	7.0 - 8.0	AC300 (r.m.s.)				100пФ	680пФ						
	7.0 - 8.0	AC250 (r.m.s.)				100пФ	680пФ						
DE1E3	7.0 - 12.0	AC300 (r.m.s.)					1000пФ	4700пФ					
	7.0 - 12.0	AC250 (r.m.s.)					1000пФ	4700пФ					

сСтандарт Electrical Appliance and Material Safety Law of Japan

Серия	Диаметр, мм	Номин. напр-е, В					Диапаз	он емкост	ей, Ф				
ССРИИ	диаметр, ми	пост.тока	0.1p	1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
DEJE3	7.0 - 11.0	AC250 (r.m.s.)					1000пФ	4700пФ					
DEJF3	8.0 - 11.0	AC250 (r.m.s.)					4700r	10000	пФ				

Дисковые (высоковольтные)

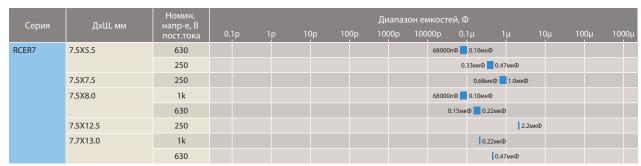
Серия	Диаметр, мм	Номин. напр-е, В				Диапаз	он емкост	ей, Ф				
ССРИИ	диаметр, им	пост.тока	0.1p	10p	100p	1000p	10000p	0.1μ	1μ	10μ	100μ	1000μ
DHR4E	8.0 - 18.0	15k			100пФ	1000n	Ф					
	8.0 - 16.0	12k			100пФ	1000n	Ф					
	8.0 - 15.0	10k			100пФ	1000n	Ф					
DHRB3	8.0 - 18.0	15k			100пФ	1000n	Ф					
	8.0 - 16.0	12k			100пФ	1000n	Ф					
	8.0 - 15.0	10k			100пФ	1000n	Ф					

Выводные керамические конденсаторы

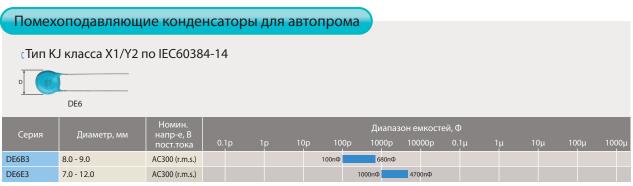
Для автопрома

Трансмиссия/безопасность (AEC-Q200)

(Термокомпенсирующие конденсаторы


Серия	ДхШ, мм	Номин. напр-е, В					Диапаз	он емкост	ей, Ф				
ССРИИ		пост.тока	0.1p		10p	100p	1000p	10000p	0.1μ		10μ	100μ	1000μ
RCE5C	3.6X3.5	100		1.0пФ			150	0пФ					
		50		1.0pF				3900пФ					
	4.0X3.5	100					1800пФ	3300пФ					
		50					4700n	Ф 22	2000пФ				
RCE7U	4.0X3.5	250				100пФ		4700пФ					
	5.5X4.0	1k			10пФ		1000п	Ф					
		630			10пФ			4700пФ					
		250					680	0пФ 10000г	ιΦ				
	5.5X5.0	1k					1500пФ 2	200пФ					
		630					680	0пФ 10000г	ιΦ				
	7.5X5.5	1k					3300пФ	4700пФ					
		630						15000пФ 22	2000пФ				
	7.5X8.0	1k					680	0пФ 10000г	ιΦ				
		630						33000пФ	47000пФ				
	7.7X13.0	1k						200	000пФ				
		630							94000n	Ф			

сКонденсаторы с высокой диэлектрической проницаемостью



Серия	ДхШ, мм	Номин. напр-е, В					Диа	пазон е	мкостей, (D			
Серил		пост.тока	0.1p	р	10p	100p	1000	p 10	000p 0	.1μ 1	Ιμ 1	0μ 1	00μ 1000μ
RCEC7	5.5X5.0	100								1.5м	кФ 2.2мкФ		
	5.5X7.5	100									4.7	мкФ	
RCER7	3.6X3.5	100				220пФ			22000n	Φ			
		50				220пФ				0.10мкФ			
	4.0X3.5	250					1000пФ		22000n	Φ			
		100						3	3000пФ	0.33N	ικΦ		
		50							0.15	μF 0.4	7мкФ		
	5.5X4.0	1k					1000пФ		10000пФ				
		630					1000пФ		22000n	Φ			
		250						3	3000пФ	0.10мкФ			
		100							0.15м	кФ	1.0мкФ		
		50								0.68мкФ	2.2мкФ		
		25									3.3мкФ 4.7	мкФ	
	5.5X5.0	1k							пФ 22000п				
		630						3	3000пФ 47				
		250							0.15м	кФ 0.22мк0			
		50									3.3мкФ 4.7	мкФ	
		25										10мкФ	
	5.5X7.5	50										10мкФ	
		25										22мкФ	
	7.5X5.5	1k						3	3000пФ 47	000пФ			

Продолжение на следующей странице.

Трансмиссия/безопасность (AEC-Q200) 150°C (Термокомпенсирующие конденсаторы RH RHE5G 3.6X3.5 100 100пФ 1500пФ 50 4.0X3.5 100 1800пФ 3300пФ 4700πΦ 10000πΦ (Конденсаторы с высокой диэлектрической проницаемостью RH RHEL8 3.6X3.5 0.10мкФ 4.0X3.5 0.10мкФ 100 50 0.15мкФ 0.33мкФ 0.15мкФ 0.22мкФ 5.5X4.0 100 50 5.5X5.0 50 3.3мкФ 4.7мкФ 5.5X7.5 50

Высоковольтные керамические конденсаторы

Полимерные алюминиевые электролитические конденсаторы

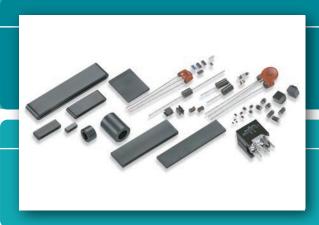
Серия	ДхШ, мм	Номин. напр-е, В пост.тока	0.	1p	1p	10p	100p	Диапа: 1000р	зон емкосто 10000р	ей, Ф 0.1µ	1μ	10μ	100	0μ 10 <u>0</u> 0μ
ECAS	7.3X4.3	16									6.	8мкФ	22мкФ	
		12.5										10мкФ		100мкФ
		10										10мкФ		150мкФ
		6.3										10мкФ		330мкФ
		4											68мкФ	330мкФ
		2											100мкФ	560мкФ

Подстроечные конденсаторы

Триммеры - это переменные конденсаторы, используемые для настройки параметров электрооборудования.

Монтаж	Метод пайки	Серия	Макс. высота	Размер (ШхД)	Напр-е	Рабочий темп. диапазон	Примечания
			0.9мм макс.	1.5Х1.7мм	25B	-25 +85°C	
		© ТZY2	1.25мм макс.	2.5Х3.2мм	25B	-25 +85°C	
	Пайка оплавлением	TZC3	1.7мм макс.	3.2Х4.5мм	100B	-25 +85°C	
Пто	Паика оплавлением	TZW4	2.6мм макс.	4.2Х5.2мм	250B	-55 +125°C	для ВЧ
Для поверхностного монтажа		TZB4_A	3.2мм макс.	4.0Х4.5мм	100B/50B	-25 +85°C	
		TZB4_B	3.2мм макс.	4.0Х4.5мм	100B/50B	-25 +85°C	
		TZB4_A	3.2мм макс.	4.0Х4.5мм	100B/50B	-25 +85°C	с защитной пленкой
	Пайка волной припоя	TZB4_B	3.2мм макс.	4.0Х4.5мм	100B/50B	-25 +85°C	с защитной пленкой

Также см. Ионисторы на стр. 69


Каталоги по продукции

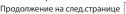
Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.

• Керамические ЧИП конденсаторы	Каталог № С02Е
• Керамические ЧИП конденсаторы	
для автоэлектроники	Каталог № С03Е
• Керамические Х/Ү конденсаторы/	
Высоковольтные керамические	
конденсаторы	Каталог № С85Е
• Керамические подстроечные	
конденсаторы	Каталог № Т13Е
• Полимерные алюминиевые	
электролитические конденсаторы	Каталог №С90Е
• Керамические выводные конденсаторы	Каталог № С49Е
• Высокоэффект. ионисторы серии DMF	Каталог № О83Е
• Высокоэффект. ионисторы серии DMT	Каталог № О84Е

Шумоподавляющие и помехоподавляющие фильтры

Обзор

Благодаря использованию уникальных керамических материалов и современных технологий их обработки Murata предлагает широкий выбор компонентов для подавления ЭМП.


Продукция

- Фильтры подавления ЭМП (чип и выводные)
- Компоненты подавления шумов для автоэлектроники
- Компоненты защиты от ЭСР Сетевые фильтры
- Ферритовые сердечники

Шумоподавляющие фильтры (ферритовые бусины)

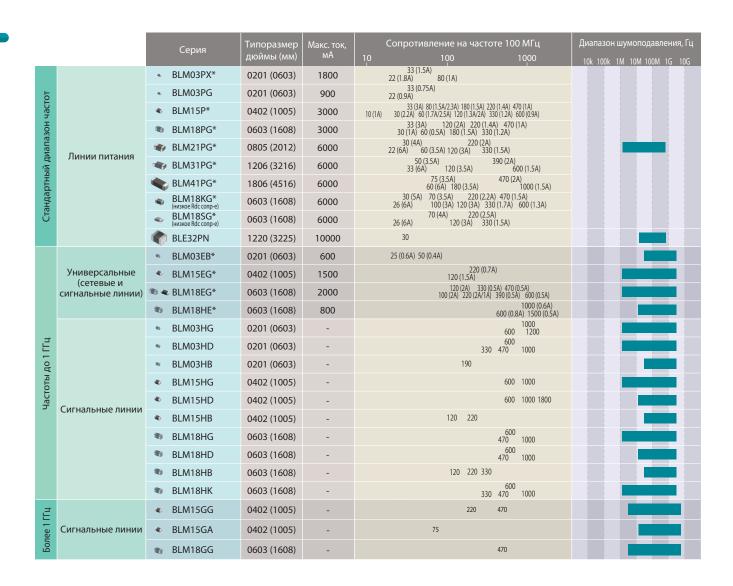
			Серия	Типоразмер дюймы (мм)	Макс. ток, мА	Сопротивление на частоте 100 МГц Диапазон шумоподавления, Гц 10 100 1000 10k 100k 1M 10M 100M 1G 10G
	Универс	альные	▼ BLM02AX	01005 (0402)	750	10 70 120
	(сете и сигна		■ BLM03AX	0201 (0603)	1000	10 80 120 240 600 1000
	лин		BLM15AX	0402 (1005)	1740	10 30 70 120 220 600 1000
			■ BLM03AG	0201 (0603)	-	10 70 120 240 600 1000
		Для	BLM15AG	0402 (1005)	-	10 70 120 220 600 1000
L		сигналь-	BLM18AG	0603 (1608)	-	220 470 120 150 330 600 1000
acTo.		ных ли- ний об-		0805 (2012)	-	220 470 120 150 330 600 1000
HC HC		щего при-	BLM18TG	0603 (1608)	-	120 220 600 1000
Пазс		менения	BLA2AA (сборка 4 элемента)	0804 (2010)	-	120 220 600 1000
Стандартный диапазон частот			BLA31AG (сборка 4 элемента)	1206 (3216)	-	30 60 120 220 600 1000
, Hblľ	Тип линейного		▼ BLM02BX	01005 (0402)	-	120 150
Тарт	сигнала		◆ BLM03B	0201 (0603)	-	10 22 47 75 120 240 470
Стан		Для высоко-	BLM15B	0402 (1005)	-	5 10 22 33 75 120 220 470 1000
		скорост-	BLM18B	0603 (1608)	-	75 140 220 420 600 1500 2200 5 10 22 47 60 120 150 330 470 1000 1800 2500
		ных сиг-		0805 (2012)	-	75 200 330 470 750 1500 2200 2700 5 60 120 150 220 420 600 1000 1800 2250
		линий	BLA2AB (сборка 4 элемента)	0804 (2010)	-	10 22 47 75 120 220 470 1000
			BLA31BD (сборка 4 элемента)	1206 (3216)	-	120 220 470 1000
		Для цифро-	BLM18RK	0603 (1608)	-	120 220 470 1000
		вых интер- фейсов	BLM21RK	0805 (2012)	-	120 220 470 1000

Информация по компонентам для автоэлектроники содержится в каталоге C51E "Индуктивные фильтры давления ЭМП (DC) для автоэлектроники"

Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

Каталоги по продукции

Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.


- ЧИП фильтры подавления ЭМП EMIFIL
- фильтры подавления ЭМП (DC)/ЧИП индуктивные фильтры для автоэлектроники
- выводные фильтры подавления ЭМП EMIFIL
- сетевые фильтры подавления ЭМП EMIFIL
- применение фильтров EMIFIL в цифровом оборудовании
- применение фильтров EMIFIL
- подавление помех в источниках питания и схемах развязки цифровых ИМС
- ферритовые сердечники для подавления ЭМП

Каталог № С31Е

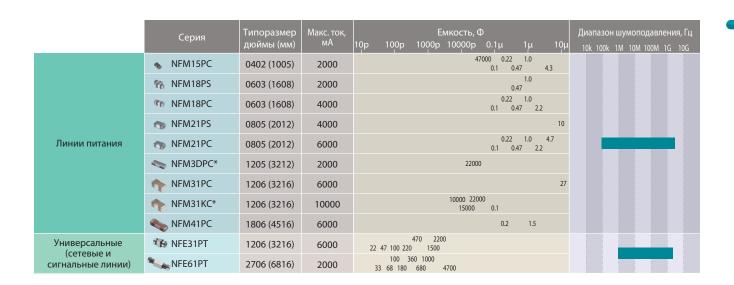
Каталог № С51E Каталог № С30E Каталог № С09E

Каталог № С33E Каталог № С35E

Каталог № С39E Каталог №О63E

Шумоподавляющие фильтры (3- терминальные чип- конденсаторы)

	Серия	Типоразмер дюймы (мм)	Макс. ток, мА	Емкость, Ф Диапазон шумоподавления, Гц 10р 100р 1000р 10000р 0.1µ 1µ 10µ 10k 100k 1M 10M 100M 1G 10G
	NFM15CC	0402 (1005)	-	2200 22000
	◆ NFM18CC	0603 (1608)	-	470 2200 22 47 100 220 1000 22000
C	NFM21CC	0805 (2012)	-	470 2200 22 47 100 220 1000 22000
Сигнальные линии	NFM3DCC	1205 (3212)	-	470 2200 22 47 100 220 1000 22000
	NFM41CC	1806 (4516)	-	470 2200 22 47 100 220 1000 22000
	NFA31CC (сборка 4 элемента)	1206 (3216)	-	470 2200 22 47 100 220 1000 22000


^{*} Потребуется снижение номинального тока для некоторых позиций в зависимости от диапазона рабочих температур Информация по компонентам для автоэлектроники содержится в каталоге С51Е "Фильтры подавления ЭМП (DC)/Индуктивные фильтры для автоэлектроники".

Продолжение на след.странице



Шумоподавляющие фильтры (LC/RC фильтры)

Шумоподавляющие фильтры (ЧИП EMIFIL)

	Серия	Типоразмер дюймы (мм)	Макс. ток, мА	Сопротивление на частоте 1 МГц Диапазон шумоподавления, Гц 1 10 100 1000 10k 100k 1M 10M 100M 1G 10G
Универсальные	NFZ2HBM_10	1008 (2520)	1200	2.9 6.1 11 24 60 1.5 4.4 8.4 17 33
(сетевые и сигнальные	◆ NFZ32BW_10*	1210 (3225)	2550	7.4 15 32 70 150 290 620 3.6 9.0 21 42 110 220 450 880
линии)	NFZ32BW_11*	1210 (3225)	2900	6.8 9.8 19 31 65 150 3.3 8.4 12 21 52 100

^{*} Потребуется снижение номинального тока для некоторых позиций в зависимости от диапазона рабочих температур Информация по компонентам для автоэлектроники содержится в каталоге С51Е "Фильтры подавления ЭМП (DC)/Индуктивные фильтры для автоэлектроники".

Продолжение на след.странице

	Серия	Серия Типоразмер Макс. ток дюймы (мм) мА		100	Сопротивление на частоте 100 МГц 00			Диапазон шумоподавления, Гц 10k 100k 1M 10M 100M 1G 10G			
Сигнальные линии	NFZ32SW_10	1210 (3225)	-	100		300	900	10k 100	k 1M 10M 10	0M 1G 1	10G
Универсальные	NFZ18SM_10	0603 (1608)	1250	120							
(сетевые и сигнальные линии)	NFZ2MSM_10	0806 (2016)	4000	100	180	300	600				

ЧИП фильтры подавления синфазных помех

		Серия	Типоразмер дюймы (мм)	Макс. ток, мА	Полное сопротивление синфазного сигнала на 100 МГц Диапазон шумоподавления, Гц
	Для аудио	♦ DLM11G	0504 (1210)	-	600
		DLM11S	0504 (1210)	-	45 90
		DLPOQSN	025020 (0605)	-	60
		DLPOQSA	025020 (0605)	-	15 7 35
		* DLPONSC	03025 (0806)	-	28 90
		→ DLPONSN	03025 (0806)	-	35 90 67 120
		* DLPONSA	03025 (0806)	-	15 7
		DLP11SN	0504 (1210)	-	67 240 90 120 160 200 280 330
		DLP11SA	0504 (1210)	-	35 90 67
Сигнальные	Для сверх-	DLP11RN	0504 (1210)	-	45
	скоростных сигнальных	DLP11RB	0504 (1210)	-	15 40
	линий	◆ DLP11TB	0504 (1210)	-	80
		DLP31S	1206 (3216)	-	120 220 550
		DLP1NDN (сборка 2 элемента)	05025 (1506)	-	35 90 67
		DLP2ADA (сборка 2 элемента)	0804 (2010)	-	35 90 67
		DLP2ADN (сборка 2 элемента)	0804 (2010)	-	90 240 67 120 160 200 280
		DLP31DN (сборка 2 элемента)	1206 (3216)	-	90 130 200 320 440
		DLW21S	0805 (2012)	-	90 490 67 120 180 260 370 500 920
		DLW21H	0805 (2012)	-	90 67 120 180
		DLW31SN	1206 (3216)	-	90 160 260 600 1000 2200
		DLW43SH	1812 (4532)	-	
Универс	альные	DLW44S*	1515 (4040)	2100	850 2200 400 1700 2400
(сетевые и с	игнальные	DLW5AH/DLW5BS*	2014 /2020 (5036) /(5050)	5000	500 800 1500 4000 190 350 600 1000 3000
лин	ии)	DLW5AT*/DLW5BT*	2014 /2020 (5036)/(5050)	6000	50 110 230 330 500 1000 1400 100 150 250 400 850 1100 2700
		Серия	Типоразмер дюймы (мм)	Макс. ток, мА	Полное сопротивление синфазного сигнала на 10 МГц Диапазон шумоподавления, Гц 100 500 1000 100k 1M 10M 100M 1G 10G
Сильнот для авто		PLT10H*	-	-	45 400 900 100 500 1000

	Серия	Типоразмер дюймы (мм)		Полное сопротивлен 100	ние синфазного сигн 500	ала на 10 МГц 1000	Диапазон шумоподавления, Гц 100k 1M 10M 100M 1G 10G
Сильноточные для автопрома	PLT10H*	-	-	45 100	400 500	900 1000	

^{*} Потребуется снижение номинального тока для некоторых позиций в зависимости от диапазона рабочих температур Информация по компонентам для автоэлектроники содержится в каталоге C51E "Фильтры подавления ЭМП (DC)/Индуктивные фильтры для автоэлектроники".

Продолжение на след.странице 🗾

Шумоподавляющие фильтры (блочные)

		Серия	Высота, мм	Номин. напр-е, В пост.тока	Номин.ток, А	Диапазон шумоподавления, Гц 10k 100k 1M 10M 100M 1G 10G
		BNX022*	3.1	50	10	TOT PT WOOT WIT WITH AUGUS
		BNX023*	3.1	100	15	
		BNX024*	3.5	50	15	
	SMD	BNX025*	3.5	25	15	
	JIVID	BNX026*	3.5	50	15	
		BNX027*	3.5	16	15	
Линии питания		BNX028* 3.5		16	15	
		BNX029*	3.5	6.3	15	
		BNX002	13 max.	50	10	
		BNX003	13 max.	150	10	
	Выводные	BNX005	13.5 max.	50	15	_
		BNX012*	8.5 max.	50	15	
		BNX016*	8.5 max.	25	15	

^{*} Потребуется снижение номинального тока для некоторых позиций в зависимости от диапазона рабочих температур Информация по компонентам для автоэлектроники содержится в каталоге С51Е "Фильтры подавления ЭМП (DC)/Индуктивные фильтры для автоэлектроники".

Компоненты защиты ESD

Компоненты защиты от электростатических разрядов для оборудования различного типа

Керамические устройства защиты серии LXES_A

Уникальная технология Murata для отличной помехоустойчивости к электростатическим разрядам при сверхнизких значениях емкости.

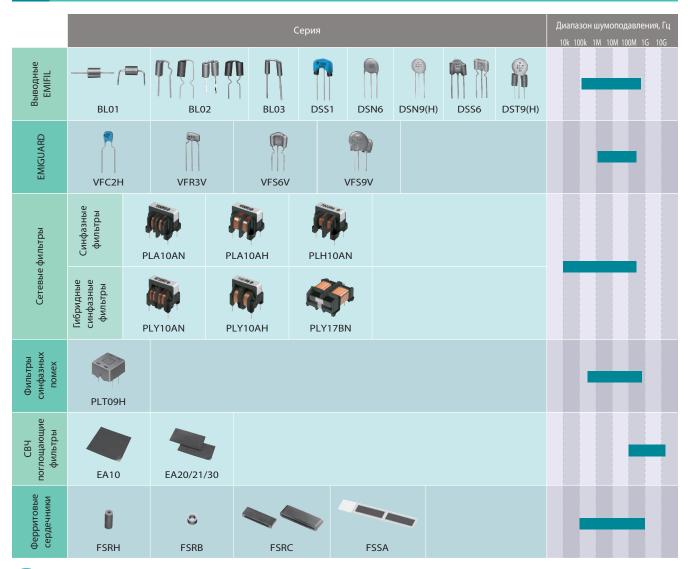
Кремниевые устройства защиты серии LXES_B

Новая технология корпусирования для устойчивости оборудования к электростатическим разрядам.

Продолжение на след.странице

Кремниевые устройства защиты серии LXES_T

Новые технологии корпусирования для устойчивости оборудования к электростатическим разрядам.

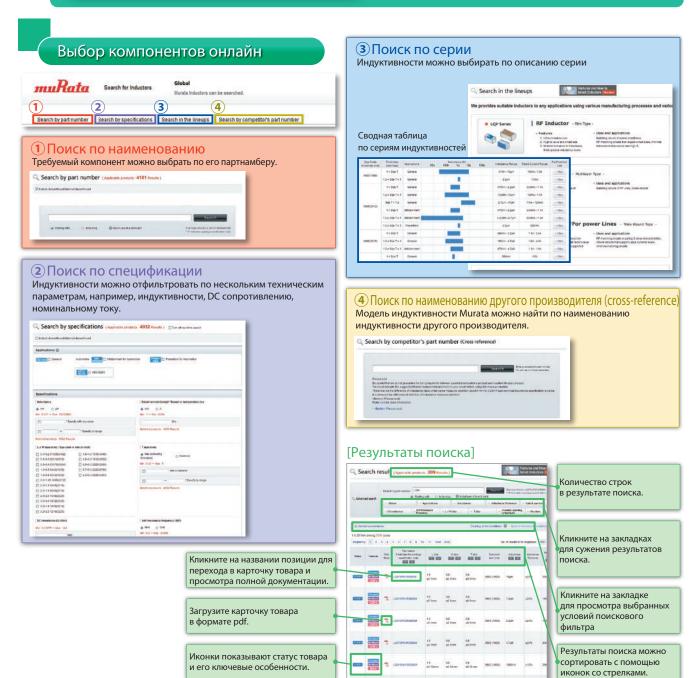

Дифференциальные фильтры с ESD защитой серии LXES_D

Уникальная технология Murata для обеспечения устойчивости оборудования к электростатическим разрядам с фильтром дифференциальных помех и малой номинальной емкостью.

Шумоподавляющие фильтры (выводные)

Индуктивности (дроссели) Широкий выбор ЧИП и силовых

индуктивностей



Обзор

Благодаря использованию уникальных керамических материалов и современных технологий их обработки Murata предлагает широкий выбор индуктивностей для различных применений.

Продукция

- РЧ индуктивности
- Индуктивности для силовых цепей
- Индуктивности общего применения

и его ключевые особенности.

РЧ индуктивности

Пленочные - серия LQP

Пленочные индуктивности серии LQP имеют набор отличительных характеристик благодаря микрообработке слоев пленки с фотолитографической технологией изготовления электродов. Такие индуктивности имеют улучшенную добротность (Q) при меньших габаритных размерах, а также минимальное отклонение от номинальной индуктивности. Серия LQP представлена широким номинальным рядом компонентов в корпусе 0201/0603, который наиболее массово используется в современной электронике, а также в самом малогабаритном корпусе 01005/0402.

Индуктивности предназначены для использования в согласующих целях и резонансных схемах, где требуется высокая плотность монтажа, малая погрешность индуктивности и широкий выбор номинальных значений. Также, их можно использовать в дроссельных схемах, где требуется малый размер корпуса и низкое сопротивление постоянному току.

(Особенности

- · Сверхмалый размер
- · Высокое значение добротности при малых габаритных размерах
 Пленочная технология изготовления индуктивностей позволяет получить компоненты с более высоким Q фактором по сравнению с
 монолитными аналогами. Компания Murata предлагает пленочные индуктивности даже в таких миниатюрных корпусах, как 0201/0603 и

01005/0402 (см. рис. 1). Линейка продукции в малогабаритных корпусах (рис. 2).

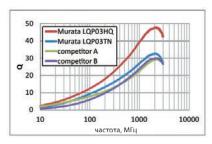


Рис. 1 Сравнение параметра добротности 0603 индуктивностей серии LQP03 и монолитных индуктивностей других производителей (емкость 10 нГн).

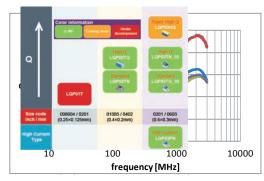


Рис. 2

• Минимальная погрешность индуктивности, широкий ряд значений

Разница в погрешности номинала монолитной и пленочной индуктивностей показаны на рисунке ниже. По сравнению с монолитной конструкцией пленочные индуктивности имеют более высокую точность позиционирования при формировании катушки. Т.о., погрешность номинального значения уменьшается, что позволяет сделать модели с более частым шагом номиналов.

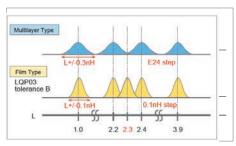


Рис. З Шаг и погрешность номинальных значений

Область применения

· Согласующие цепи силовых усилителей, РЧ согласующие цепи, требующие малых габаритных размеров, высокой точности, номинальной индуктивности и высокой добротности.

(Линейка продукции

Серия	Типоразмер дюймы (мм)	Применение		Индуктивность, Гн 10нГн 100нГн 1мкГн 10мкГн 100мкГн 1мГн 10мГн	Диапазон рабочего тока
LQP	01005 (0402)	общее	0.2нГн	39нГн	90мА - 990мА
	0201 (0603)	общее	0.1нГн	270нГн	50mA - 1.4A
		информразвлек.	0.6нГн	120нГн	80мА - 850мА
	0402 (1005)	общее	1.0нГн	33нГн	60мА - 400мА
	0603 (1608)	общее	1.3нГн	100нГн	50мА - 300мА

Многослойные индуктивности - серия LQG

Многослойная технология производства индуктивностей позволяет уменьшить габаритные размеры и снизить стоимость изготовления компонентов по сравнению с проволочными аналогами. Несмотря на то, что добротность многослойных индуктивностей уступает намотанным, сочетание остальных параметров, таких как погрешность, номинальный ток, размер, стоимость, позволяет их использовать в самом широком круге применений. Многослойные индуктивности применяются в РЧ схемах согласования, дросселях и резонансных цепях мобильных коммуникационных устройств.

Высокое качество и надежность компонентов допускает их применение в автоэлектронике.

(Особенности

- Широкий ряд номинальных значений
- · Повышенная надежность

(Область применения

· Согласующие цепи радиоаппаратуры

(Линейка продукции

Серия	Типоразмер дюймы(мм)	Применение	Индуктивность, Гн 0.1нГн 1нГн 10нГн 100нГн 1мкГн10мкГн100мкГн1мГн 10мГн	Номинальный ток
LQG	0402 (1005)	Общего	1нГн 270нГн	110мА - 300мА
		Инфорразвл.	1нГн 270нГн	110мА - 300мА
		Трансмиссия	1нГн 270нГн	110мА - 300мА
	0603 (1608)	Общего	1.2нГн 100нГн	350mA - 1.1A
		Трансмиссия	1.2нГн 270нГн	200мА - 1.1А

РЧ индуктивности для шин питания

Проволочные индуктивности серии LQW

Намотанные проволочные индуктивности серии LQW отличаются высокой добротностью. Такие компоненты используются в согласующихся цепях радиоаппаратуры, поскольку высокий параметр Q позволяет достичь отличной аттенюации в проходном фильтре. Также, они применяются в согласующих цепях антенн для поддержания чувствительности приема и передачи. Кроме того, их низкое сопротивление постоянному току позволяет применять индуктивности в дросселях с достаточно высоким рабочим током.

(Особенности

- · Низкое сопротивление постоянному току
- Сверхвысокая добротность (Q)
 Частотные характеристики добротности для разных типов катушек
 типоразмера 1005 (монолитная и проволочная) показаны на графике рис.1.
 Он показывает преимущества проволочных катушек по параметру
 добротности.
- Возможность пропускания высокого тока

(Область применения

· согласующие схемы в радиаппаратуре, требующие высокого значения Q. Дроссельные цепи с высоким рабочим током, антенны

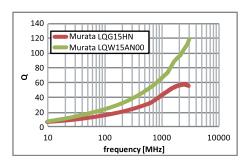


Рис.1 Сравнение параметра Q многослойных (LQG15) и проволочных индуктивностей (LQW15), номинал 2,7 нГн

(Линейка продукции

Серия	Типоразмер дюймы(мм)	Применение	Индуктивность, Гн 0.1нгн 1нгн 10нгн 100нгн 1мкгн 10мкгн 100мкгн 1m 10m	Номинальный ток
LQW	0201 (0603)	Общего	5.4нГн 13нГн	280мА - 460мА
	03015 (0804)	Общего	1.1нГн 33нГн	140мА - 990мА
	0402 (1005)	Общего	1.3нГн 560нГн	110мА - 3.15А
		Инфорразвл.	1.3нГн 120нГн	110мА - 1.2А
	0603 (1608)	Общего	1.6нГн 650нГн	75мА - 3.2А
		Инфорразвл.	2.2нГн 470нГн	75мА - 1.4А
	0805 (2012)	Общего	470нГн 2200нГн	75мА - 160мА
	0805 (2015)	Общего	2.7нГн 820нГн	160мА - 1.9А
	1008 (2520)	Общего	12нГн 4700нГн	260мА - 1А
	1206 (3216)	Общего	8.8нГн 100нГн	230мА - 750мА

Для шин питания/Общего применения

Многослойные серии LQM

Монолитная конструкция индуктивности состоит из поочередно расположенных слоев керамического материала и проводника. По сравнению с проволочными катушками такие индуктивности имеют малый размер и низкий профиль корпуса. Тенденция к увеличению рабочих частот в мобильных устройствах приводит к уменьшению индуктивности используемых катушек, поэтому спрос на монолитные индуктивные компоненты будет увеличиваться.

(Особенности

- · Идеальны для портативных устройств, где требуется малая высота комплектующих
- Экранированная структура
- (Область применения
- Мобильные телефоны, цифровые видеокамеры

(Линейка продукции

Серия	Типоразмер дюймы(мм)	Толщина макс, мм	Применение	Индуктивность, Гн 0.1n 1n 10n 100n 1μ 10μ 100μ 1m 10m	Номинальный ток
LQM	0603 (1608)	1.0 > размер T	Общего	0.047µН 10µН	15мА - 1.3А
		1.2 ≥ размер Т ≥ 1.0	Общего	2.2µH	1.05A
	0805 (2012)	1.0 > размер T	Общего	0.47µН 2.2µН	600мА - 1.1А
			Инфорразвл.	0.47µН 2.2µН	600мА - 1.1А
		1.2 ≥ размер Т ≥ 1.0	Общего	0.1μΗ	15мА - 1.7А
			Инфорразвл.	0.47µН 4.7µН	800мА - 1.3А
			Трансмиссия	2.2µH	800мА
		размер T > 1.2	Общего	2.7µН 47µН	7мА - 120мА
	0806 (2016)	1.0 > размер T	Общего	0.24µH 2.2µH	1.1A - 2.6A
		1.2 ≥ размер Т ≥ 1.0	Общего	0.16μH 4.7μH	1A - 4A
			Инфорразвл.	0.47µН 4.7µН	1.1A - 1.6A
	1008 (2520)	1.0 > размер T	Общего	0.56µН	1.5A
			Инфорразвл.	0.56µН	1.5A
		1.2 ≥ размер Т ≥ 1.0	Общего	0.24μH 4.7μH	800мА - 3.3А
			Инфорразвл.	0.47µН 4.7µН	800мА - 1.8А
	1206 (3216)	1.0 > размер T	Общего	0.47µН 4.7µН	700мА - 1.4А
	1210 (3225)	1.2 ≥ размер Т ≥ 1.0	Общего	1μH	1.8A

Проволочные индуктивности LQH серии

Проволочные намотанные индуктивности состоят из медного проводника, намотанного по спирали на ферритовый сердечник. Большинство намотанных индуктивностей Murata для источников питания имеют защитное покрытие поверх проволоки, которые повышает надежность компонентов.

Преимущества использования намотанных катушек проявляется при использовании их в сильноточных цепях с высокими номинальными значениями индуктивности. Целевые рынки таких компонентов - электроника от мобильных телефонов до ТВ и цифровых видеокамер.

(Особенности

- Широкая линейка моделей различных типоразмеров
- Модели с высокой номинальной индуктивностью, идеальны для повышающих источников питания
- (Область применения
 - · Мобильные телефоны, цифровые видеокамеры, ТВ, HDD, игровые автоматы

(Линейка продукции

Серия	Типоразмер дюймы (мм)	Толщина макс, мм	Применение	0.1n	1n	10n	Индуктивно 100n 1µ	сть, Гн 10µ 100µ 1m 10	lm	Номинальный ток
LQH	0806 (2016)	1.0 > размер T	Общего				1мкГн	82мкГн		90мА - 595мА
	1008 (2520)	1.2 ≥ размер Т ≥ 1.0	Общего				0.47мкГн	100мкГн		130мА - 2.75А
			Инфорразвл.				0.47мкГн	22мкГн		430мА - 2.75А
		размер T > 1.2	Общего				2.2мкГн	4.7мкГн		800мА - 1.25А
	1212 (3030)	$1.2 \ge$ размер T ≥ 1.0	Общего				0.47мкГн	250мкГн		130мА - 2.86А
			Инфорразвл.				0.47мкГн	47мкГн		460мА - 2.86А
		размер T > 1.2	Общего				1мкГн	100мкГн		240мА - 2.15А
	1206 (3216)	размер T > 1.2	Общего			0.054мкГн	1	100мкГн		45мA - 970mA
			Инфорразвл.			0.054мкГн	0.88	мкГн		180мА - 920мА
	1210 (3225)	размер T > 1.2	Общего			0.15	мкГн	560мкГн		40мА - 2.9А
			Инфорразвл.				0.47мкГн	330мкГн		60мА - 2.9А
			Трансмиссия			0.15	мкГн	22мкГн		250мА - 1.45А
	1515 (4040)	1.2 ≥ размер Т ≥ 1.0	Общего				0.68мкГн	47мкГн		380мА - 2.5А
			Инфорразвл.				0.68мкГн	47мкГн		410мА - 2.5А
		размер T > 1.2	Общего				0.51мкГн	470мкГн		145мА - 4.5А
	1812 (4532)	размер T > 1.2	Общего				0.56мкГн	2400	мкГн	25мА - 3.3А
			Инфорразвл.				1мкГн	2200	икГн	30мА - 3.3А
	2020 (5050)	размер T > 1.2	Общего				0.47мкГн	150мкГн		630мА - 4.6А
			Инфорразвл.				0.47мкГн	22мкГн		1.05A to 4A
	2220 (5750)	размер T > 1.2	Общего			0.12M	кГн		10000мкГн	50мА - 6А
	2525 (6363)	размер T > 1.2	Общего			0	27мкГн		10000μΗ	50мА - 6А

с Эффективное применение силовых индуктивностей

Индуктивности Murata для силовых цепей представлены двумя сериями: проволочными намотанными и монолитными индуктивностями. Для удобства выбора оптимального компонента Murata разработала онлайн инструмент, который позволяет рассчитать и показать рабочие параметры компонента при использовании в конкретной схеме разработчика.

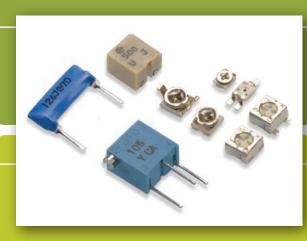
Выбор индуктивности значительно влияет на потери преобразования энергии в источниках питания. Потери на индуктивности можно рассчитать на основе частоты и рабочего тока, используя онлайн инструмент Murata Power Inductor Selection Tool. Здесь же можно выбрать компоненты, которые позволят максимально повысить КПД преобразования.

Адрес онлайн ресурса:

URL: http://www.murata.com/products/inductor/chip/learn/apply/power

Каталоги по продукции

Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.


- ЧИП индуктивности
- Фильтры подавления ЭМП (DC)/ЧИП индуктивности для автоэлектроники

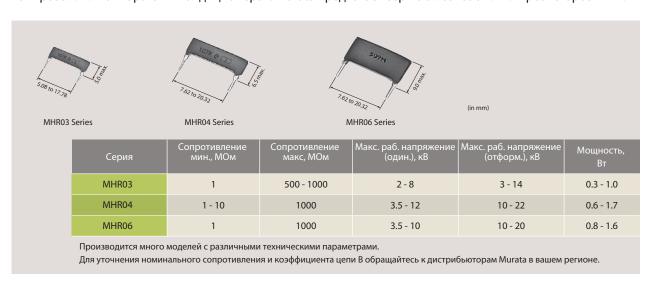
Каталог №О05Е

Каталог №С51Е

Резисторы

Широкая линейка для различных применений

Обзор


Обладая современными технологиями и уникальными материалами, Murata предлагает широкий ассортимент резистивных компонентов.

(Линейка продукции)

- Высоковольтные резисторы
- Триммеры (подстроечные резисторы)

Высоковольтные резисторы

Высоковольтные резисторы используются в бытовой и офисной технике, например, в принтерах, копировальных аппаратах и кондиционерах. Murata предлагает серию высоковольтных резисторов MHR.

Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

Каталоги по продукции

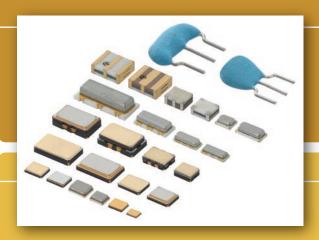
Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.

• Потенциометры

каталог №R50E

Резисторы

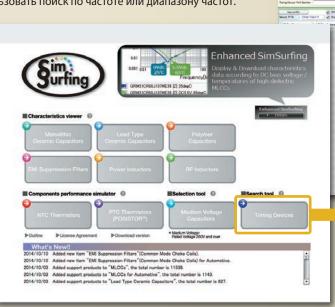
Потенциометры


Подстроечные резисторы (потенциометры) используются для регулировки сопротивления в электронной аппаратуре. Компания Murata предлагает широкий выбор компонентов с углеродными и керамическими резистивными элементами.

Монтаж	Структура	Резистивный элемент	Регулировка	Кол-во оборотов	Размер	C	ерия	Примечания
					2мм	*	PVZ2A	Низкопрофильные, 0,85 мм макс.
			Сверху				PVZ3A	Автоматическая регулировка
		Углеродный	. ,	1	Змм	۱	PVZ3G	Низкопрофильные, 1,25 мм макс.
	Открытая	ллеродный					PVZ3H	
			Сзади	1	2мм	\$	PVZ2R	Низкопроф. с малой площадью монтажа (0,9 мм макс.)
Поверхностный					Змм	8	PVZ3K	
монтаж		Керамический	Сверху	1	2мм	٩	PVA2A	Автоматическая регулировка
					Змм	**	PVG3A	Автомат. регулировка с остановом
		ометичная Керамический		1		**	PVG3G	С остановом
Герметичная	Герметичная		Сверху		4мм		PVM4	
				11	5мм	S. X.	PVG5A	
			Сбоку	11	5мм		PVG5H	
				1	6мм		PV32H	С остановом
				4	7мм		PV12P	
			Сверху	12	бмм		PV37W	
В отверстия	Герметичная	Керамический		25	10мм	0 2000 1 110 1110 1110 1110 1110	PV36W	
платы ''			Сбоку	1	бмм		PV32N	С остановом
				4	7мм		PV12T	
				12	бмм		PV37X	
				25	10мм	See	PV36X	

Компоненты синхронизации

Стабильные источники синхронизации для микропроцессоров


Обзор

Современные технологии производства и уникальные компоненты синхронизации, которые обеспечивают

(Линейка продукции)

Поиск по названию микросхемы

На сайте компании разработан поиск генераторов по названию микросхемы или, наоборот, поиск микросхемы по наименованию компонента синхронизации. Также, можно использовать поиск по частоте или диапазону частот.

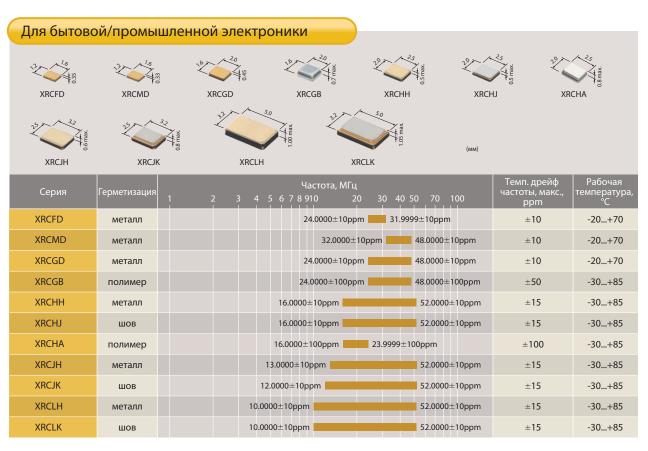
http://www.murata.com/simsurf/ic-td/

Каталоги по продукции

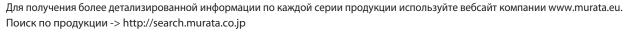
Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.

- Керамические резонаторы (CERALOCK)
- Керамические резонаторы (CERALOCK), применение каталог №Р17Е
- Кварцевые резонаторы

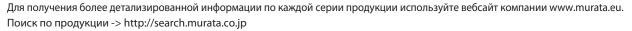
каталог №Р16Е


каталог №Р79Е

Компоненты синхронизации

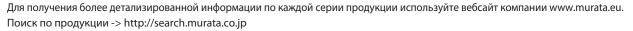

Кварцевые резонаторы

Кварцевые резонаторы обеспечивают высокую точность частоты. Murata выпускает широкую линейку резонаторов в миниатюрных корпусах для использования в цифровой аппаратуре, автоэлектронике и т.д.


Компоненты синхронизации

Кварцевые резонаторы

Используя высоконадежные кварцевые элементы, современные схемотехнические решения, отличные методы термокомпенсации и измерений, Murata предлагает широкую линейку кварцевых генераторов.


Керамические резонаторы CERALOCK

Широкая линейка компонентов в выводных и SMD корпусах для автомобильной и бытовой электроники

ЧИП резонаторы для автоэлектроники (стандартная точность) CSTCC_G_A Рабочая температура °С Частота, МГц ±0.4 (15пФ) -0.6/+0.3 (47пФ) CSTCC_G_A 2.00f0.5% 3.99±0.5% -40...+125 ±0.15 4.00f0.5% CSTCR_G_B -40...+125 7.99±0.5% CSTCE_G_A 8.00±0.5% 13.99±0.5% ±0.2 -40...+125 14.00±0.5% 20.00±0.5% CSTCE_V_C -40...+125 ±0.15 CSTCV_X_Q 20.01±0.5% 70.00±0.5% ±0.3 -40...+125 CSACV_X_Q 20.01±0.5% 70.00±0.5% -40...+125 ±0.3

Фильтры для звуковизуального оборудования

Выделение сигнала для аудио и видео устройств

Обзор

Применяя технологию обработки уникальных керамических материалов, компания Murata предлагает для разработки высококачественного цифрового аудио/видео оборудования и компьютерной техники керамические фильтры CERAFIL и ПАВ фильтры.

(Линейка продукции)

• Керамические фильтры CERAFIL (фильтры, контуры ν дискриминаторы) • ПАВ фильтры

Керамические фильтры CERAFIL

ЧИП фильтры CERAFIL 10,7 МГц

Фильтры для FM радио и VICS/RKE/TPMS приемников. Применение фильтров этой серии позволяет разрабатывать низкопрофильные и портативные устройства.

ECV / SEECV copye

(MM

		3дб полоса пропускания, кГц											
Тип	Серия	D	Е	F	G	Н	J	K					
		350	330	280	230	180	150	110					
Стандартный	SFECF10M7•						-	-					
Высоконадежный	SFECK10M7•	-	-	-	-	-							
Стандартный	SFECV10M7•	-	-	-	-	-							
Стандартный	SFECV15M0•	-		-	-	-	-	-					

[•] буква, означающая полосу пропускания ЗдБ

Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

(Каталоги по продукции)

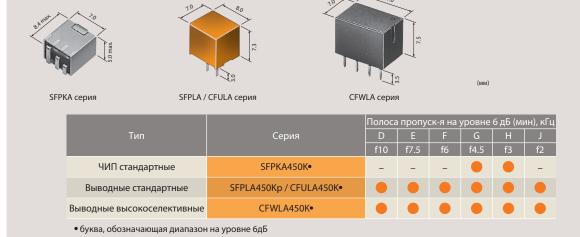
Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.

- CERAFIL (фильтры/контуры/дискриминаторы) для аудио-видео оборудования
- CERAFIL фильтры, применение

Каталог №Р50E Каталог №Р11E

Фильтры для звуковизуального оборудования

ЧИП фильтры CERAFIL 2.3-6.5 МГц


Фильтры серии SFSKA обладают такими отличительными качествами, как широкая полоса пропускания и стабильность работы и позволяют разработчикам создавать устройства с минимальными габаритными размерами. Фильтры серии SFSKB предназначены для низкочастотного диапазона.

Серия	Несущая частота, Серия МГц												
	2.3	2.8	3.2	3.8	4.3	4.5	4.8	5.2	5.5	5.7	6.0	6.5	кГц
SFSKA	-	-	-	-	-		-	-		-			f60 мин.
SFSKB						-			-		-	-	f75 мин.

CERAFIL фильтры 450 кГц

Высокая селективность, стабильность, не требуют настроек, подходят для фильтров промежуточной частоты АМ радио.

Фильтры для звуковизуального оборудования

Керамические контуры

Отличительными свойствами серии TPSKA являются высокая степень аттенюации и эффективное групповое время задержки, которые дают возможность разрабатывать миниатюрные радиоустройства.

Керамические дискриминаторы

В комплексе с микросхемой дискриминаторы дают стабильные параметры демодуляции в широкой полосе пропускания.

ПАВ контуры

Особенности: широкая полоса пропускания, большое затухание в полосе задерживания, малые габаритные размеры, ЧИП корпус.

ПАВ фильтры и ПАВ дуплексоры предназначены для применения в следующем оборудовании: мобильные телефоны, радиотелефоны (кроме автомобильных), смартфоны, планшеты, компьютеры (включая ноутбуки), игровые автоматы, камеры (кроме охранных камер), телеприставки, электронные словари и цифровое аудио оборудование. Для других применений обратитесь за консультацией к производителю.

Широкая линейка РЧ фильтров, дуплексоров, фильтров промежуточных частот

Обзор

Благодаря применению уникальных материалов и технологии их обработки, Murata предлагает миниатюрные фильтры с отличными техническими параметрами для аппаратуры связи.

(Линейка продукции)

- ПАВ фильтры для мобильных устройств
- Диэлектрические фильтры GIGAFIL
- ЧИП конденсаторные фильтры
- Керамические фильтры CERAFIL
- Керамические дискриминаторь
- Кварцевые фильтры

ПАВ фильтры для мобильной телефонии

ПАВ дуплексоры

Особенности: малые потери, большое затухание в полосе задерживания, малые размеры, высоко селективная полоса пропускания, ЧИП корпус

0.6 max.

SAYRF cepus

(MM)

SAYEY серия

SAYFH серия

РЧ фильтры

Особенности: малые потери, большое затухание в полосе задерживания, малые размеры, высоко селективная полоса пропускания, ЧИП корпус.

(Одиночные фильтры

1.35 6.06 max.

(MAMA)

SAFEA серия

рия SAFEB сер

(Сдвоенные фильтры

VFD conua

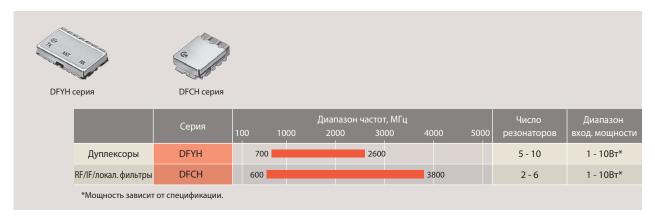
SAWFD C

ПАВ блоки

Данный модуль, содержащий согласованные компоненты, позволят упростить подключение к радиочастотной микросхеме.

(Фильтры

По любым вопросам по ПАВ фильтрам обращайтесь к официальным дистрибьюторам Murata.

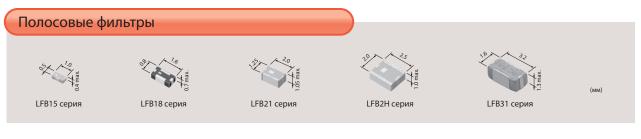

(DPX сборки

По любым вопросам касательно DPX сборок обращайтесь к официальным дистрибьюторам Murata.

ПАВ фильтры и ПАВ дуплексоры предназначены для применения в следующем оборудовании: мобильные телефоны, радиотелефоны (кроме автомобильных), смартфоны, планшеты, компьютеры (включая ноутбуки), игровые автоматы, камеры (кроме охранных камер), телеприставки, электронные словари и цифровое аудио оборудование. Для других применений обратитесь за консультацией к производителю.

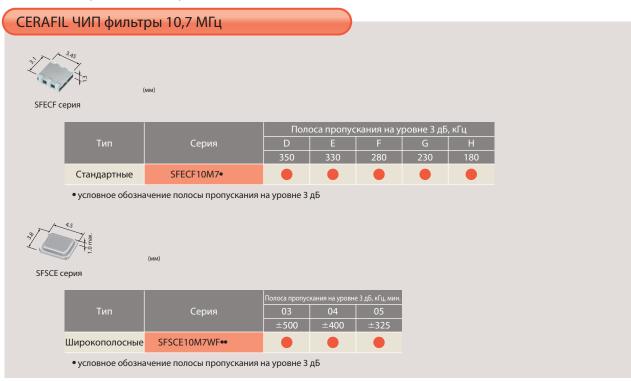
Диэлектрические фильтры GIGAFIL

Для сотовых базовых станций и других устройств телекоммуникационной инфраструктуры. Возможно изготовление фильтров с учетом индивидуальных требований заказчика.



Возможна поставка моделей с заказными техническими параметрами.

ЧИП LC фильтры


Сверхминиатюрные и низкопрофильные фильтры, выполненные по многослойной керамической технологии.

Керамические фильтры CERAFIL

Портативные и легкие фильтры для ПЧ в коммуникационном оборудовании, выполненные из пьезоэлектрических материалов.

Выводные фильтры CERAFIL 450/455 кГц														
10 CO	100 SE		57 431	6.5	6	# est	9.5		(MM)					
CFULA серия	CFWLA серия		CFULB o	ерия		CFWLB (
		Полоса пропускания на уровне 6 дБ, кГц, мин.												
Тип	Серия	В	С	D	Е	F	G	Н	J					
Тип	Серия	B ±15	C ±12.5	D ±10	E ±7.5	F ±6	G ±4.5	H ±3	±2					
Тип Высокочувст. низкопрофильные	·					•			±2 -					
	СFULA455К• (4 элемента)					•			±2 -					
Высокочувст. низкопрофильные	CFULA455K• (4 элемента) CFWLA455K• (6 элемента)					•			±2 -					
Высокочувст. низкопрофильные Высокочувст. низкопрофильные	CFULA455K• (4 элемента) CFWLA455K• (6 элемента) CFULB455K• (4 элемента)					•			±2 -					

Керамические дискриминаторы

Совместно со специализированными микросхемами керамические дискриминаторы позволяют достигать стабильных параметров демодуляции.

Кварцевые фильтры

Оригинальная тонкопленочная технология позволила компании Murata разработать высоконадежные фильтры для общего применения, в том числе и радиоприемников.

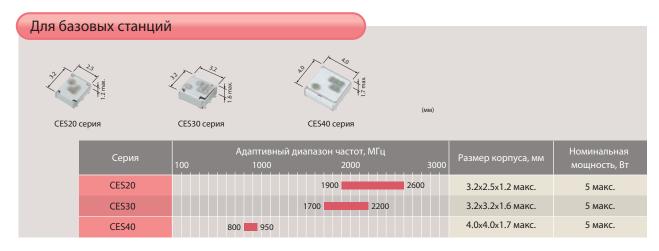
Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

Каталоги по продукции Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu. • Керамические фильтры CERAFIL/Дискриминаторы для телекоммуникационного оборудования Каталог №Р11Е • Керамические фильтры CERAFIL, применение Каталог №Р11Е

Широкая линейка радиочастотных компонентов для коммуникационного оборудования

Обзор

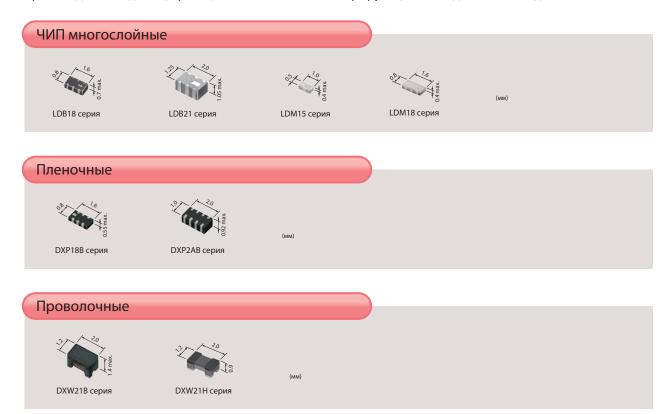
Для расширения технических возможностей коммуникационного оборудования компания Murata предлагает миниатюрные и специализированные компоненты для использования с различных разработках.


(Линейка продукции

- Изоляторы GaAs ключи
- РЧ диодные ключи
- Согласующие устройства (ЧИП многослойные и мотаные/пленочные)
- Согласующие антенные компоненты (ЧИП многослойные и пленочные)
- ЧИП многослойные компоненты (гибридные делители и липлексеры)
- ВЧ коаксиальные разъемы
- Интегральные конденсаторы
- RUSUB тонкопленочные подложки

Изоляторы

Пропускают сигнал в прямом направлении и блокируют сигналы в обратном направлении.

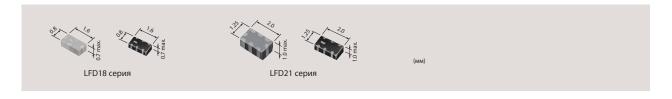


Элементы согласования

Согласующие ЧИП компоненты состоят из медного проводника и керамического материала и используются в ВЧ устройствах связи. Согласующие элементы в миниатюрном корпусе могут производится под спецификацию заказчика с симметрирующим импедансом от 50 до 200 Ом.

Элементы сопряжения

Сверхминиатюрные, низкопрофильные двунаправленные компоненты сопряжения изготавливаются по керамической многослойной технологии. Данные компоненты отличаются сверхмалыми габаритными размерами, малыми вносимыми потерями и высокими параметрами изоляции.


ЧИП многослойные гибридные делители

Делители мощности с фильтром низких частот в ультракомпактном корпусе.

ЧИП диплексеры

Диплексеры для разделения низких и высоких диапазонов частот. Подходят для переключателей в двухдиапазонных системах.

ВЧ коаксиальные разъемы

ВЧ коаксиальные разъемы

Новый дизайн корпуса с высотой стыковочной части не более 1 мм для оборудования с малой высотой корпуса.

MM5829-2700

MXJA01

MM4829-2702 MXHP32

Тип	Розетка	Номин. напр-е, В rms	напр-е, частот,		КСВН	Тип кабеля	Высота стыковки, мм
JSC	MM5829-2700	30	до 12	-40+85°C	1.3 макс. (DC - 3 ГГц)	MXJA01	1.0 макс.
HSC	MM4829-2702	30	до 6	-40+85°C	1.3 макс. (DC - 3 ГГц)	MXHP32	1.2 макс.

Номинальный импеданс: 50 Ом

ВЧ разъемы с ключом

SWH

Коаксиальные разъемы с ключом удобны для измерений параметров в мобильной телефонии и СВЧ оборудовании.

MM8930-2600

MM8030-2610

MM8130-2600

до11 до б -40...+85°C

-40...+85°C

-40...+85°C

MM8430-2610

1.2 макс. (DC ... 3ГГц)

MM126515 MXHQ87PA3000 MM126320 MXHQ87WJ3000

> MM126320 MXHS83QE3000

3000	1411410020-2010	30	
SWF	MM8130-2600	30	
SWD	MM8430-2610	30	

MM8930-2600

до б -40...+85°C Номинальный импеданс: 50 Ом

30

ЧИП интегральные конденсаторы

Высокая надежность и отличные частотные характеристики.

Термокомпенсирующие конденсаторы

Изменение емкости		Размеры,	Номин.			Рабочая				
(диапазон температур)	Серия	ММ	напр-е, В	0.1		1	гей при 25°С, г 0 1		000	температура, °C
0±30ppm/°C	CLB0A	0.25×0.25	100	0.1						-55+125
(-25 to 85°C)	CLB0C	0.35×0.25	100	0.2						-55+125
	CLB0D	0.38x0.38	100	0.2	0.4					-55+125
	CLB05	0.5×0.5	100	(0.6					-55+125
	CLB0E	0.55×0.38	100		0.5 0.6					-55+125
	CLB0F	0.64x0.64	100	(0.3					-55+125
	CLB0G	0.7×0.5	100		0.7					-55+125
	CLB0H	0.71×0.38	100		0.7 0.8					-55+125
	CLB0J	0.76×0.76	100		0.4	1.3				-55+125
	CLB09	0.9x0.9	100		0.5	1.8				-55+125
	CLB1A	1.00×0.64	100		1.1	1.6				-55+125
	CLB1B	1.09x0.76	100		1.5	2				-55+125
	CLB1C	1.27x1.27	100		1	3.6				-55+125
	CLB1E	1.49x0.9	100			2 2.7				-55+125
	CLB1G	1.73×1.27	100			3.9 4.7				-55+125
	CLB1H	1.78×1.78	100			1.8 6.8				-55+125
	CLB2C	2.19x1.27	100			5.1				-55+125
	CLB2E	2.29x2.29	100			3	10			-55+125
	CLB2L	2.95x1.78	100			7.5	10			-55+125
	CLB3G	3.71x2.29	100			11	16			-55+125
-750±60ppm/°C	CLB0A	0.25×0.25	100	(0.7					-55+125
(-25 to 85°C)	CLB0B	0.30x0.25	100		0.8					-55+125
	CLB0C	0.35×0.25	100		0.9					-55+125
	CLB0D	0.38x0.38	100		0.9	1.6				-55+125
	CLB05	0.5×0.5	100		1	2.4				-55+125
	CLB0E	0.55×0.38	100			1.8 2.4				-55+125
	CLB0F	0.64×0.64	100			2 4.3				-55+125
	CLB0G	0.7x0.5	100			2.7 3				-55+125
	CLB0H	0.71x0.38	100			2.7				-55+125
	CLB0J	0.76x0.76	100			3 6.2				-55+125
	CLB09	0.9x0.9	100			3.3 6.8				-55+125
	CLB1A	1.00x0.64	100			4.7 6.2				-55+125
	CLB1B	1.09x0.76	100			6.8 7.	5			-55+125
	CLB1C	1.27x1.27	100			7.5	15			-55+125
	CLB1E	1.49x0.9	100			7.5	9.1			-55+125
	CLB1H	1.78x1.78	100			1:	3 15			-55+125
	CLB2E	2.29X2.29	100				20			-55+125
Некоторые емко	ости не доступнь	ı для серии CLB0.	5.							

Некоторые емкости не доступны для серии CLB05.

Все однослойные интегральные конденсаторы производятся только на заказ.

Конденсаторы с высокой диэлектрической проницаемостью

Изменение емкости	Conve	Размеры,	Номин.	Диа	пазон емкостей при 25°C, і	Ф	Рабочая
(диапазон температур)	Серия	мм	напр-е, В	0.1 1		00 1000	температура, °C
±10%	CLB0A	0.25x0.25	100		5.6 12		-55+125
(-25+85°C)	CLB0B	0.30x0.25	100		13 📕 15		-55+125
	CLB0C	0.35x0.25	100		16 18		-55+125
	CLB0D	0.38x0.38	100		18 30		-55+125
	CLB05	0.5x0.5	100		22 43		-55+125
	CLB0E	0.55x0.38	100		33 43		-55+ 125
	CLB0F	0.64x0.64	100		43	75	-55+125
	CLB0G	0.7x0.5	100		47 66	3	-55+125
	CLB0H	0.71x0.38	100		47 56		-55+125
	CLB0J	0.76x0.76	100		68	110	-55+125
	CLB09	0.9x0.9	100		68	130	-55+125
	CLB1A	1.00x0.64	100		82	120	-55+125
	CLB1C	1.27x1.27	100			160 200	-55+125
	CLB1E	1.49x0.9	100			150 160	-55+125
	CLB1G	1.73x1.27	100			300	-55+125
	CLB1H	1.78x1.78	100			300 430	-55+125
	CLB2E	2.29x2.29	100			470 620	-55+125
+30, -80%	CLB0A	0.25x0.25	100		27 📕 33		-55+125
(-25+85°C)	CLB0B	0.30x0.25	100		36 39		-55+125
	CLB0C	0.35x0.25	100		43 51		-55+125
	CLB0D	0.38x0.38	100		62	82	-55+125
	CLB05	0.5x0.5	100		75	130	-55+125
	CLB0E	0.55x0.38	100		91	120	-55+125
	CLB0F	0.64x0.64	100		1:	30 220	-55+125
	CLB0G	0.7x0.5	100			150 200	-55+125
	CLB0H	0.71x0.38	100		1:	30 150	-55+125
	CLB0J	0.76x0.76	100			200 300	-55+125
	CLB09	0.9x0.9	100			200 390	-55+125
	CLB1A	1.00x0.64	100			240 360	-55+125
+30, -90%	CLB0A	0.25x0.25	100		36 56		-55+125
(-25+85°C)	CLBOD	0.38x0.38	100		91	150	-55+125
	CLB05	0.5×0.5	100		1:	220	-55+125
	CLB0F	0.64x0.64	100			220 390	-55+125
	CLB0J	0.76x0.76	100			330 560	-55+125
	CLB09	0.9x0.9	100			390 680	-55+125

Некоторые емкости не доступны для серии CLB0A/B/C/D/E, CLB1C.

Все однослойные интегральные конденсаторы производятся только на заказ.м

Пленочные подложки RUSUB

Для фотодиодных модулей.

Особенности

- RUSUB технология позволяет объединить на одном кристалле однослойный конденсатор и тонкопленочный резистор. Это позволяет не только сократить число компонентов разработки, но и уменьшить затраты на сборку изделия. Также, использование таких элементов уменьшает габариты конечного изделия.
- Однослойная структура повышает собственную частоту колебаний, этим достигается стабильность работы на высоких частотах.
- Малое расстояние между конденсатором и пленочным резистором уменьшает остаточную индуктивность и нежелательные шумы, повышая рабочие характеристики прибора.
- Электроды покрыты позолотой, поэтому требуют установки внутри модуля, допускается проволочный монтаж с помощью позолоченного проводника.
- Доступны модели с покрытием AuSn.
- Преимущества при применении в лавинных фотодиодах, т.к. конденсатор имеет напряжение пробоя 100 В.

(MM)

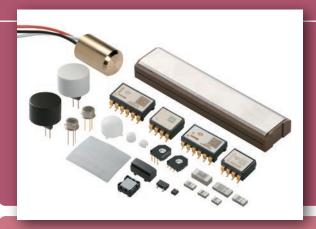
- RUCYT101 серия
- Выпускаются 6 типов стандартных образцов RUSUB C+R (конденсатор + резистор)
- По запросу производятся компоненты с индивидуальными параметрами подложки, сопротивления, формы электрода.

Наименование	Размеры, мм (ДхШхВ)	Емкость, пФ	Сопротивл-е, Ом	Температурная погрешность емкости в диапазоне -25…85°С	Номин. напр-е, В	Темп. коэф-т сопротивления (ppm/°C)	Номин. мощность (мВт/кв.мм)
RUCYT101K00009GNTC	1.0x0.5x0.11	100±10%	50±20%				
RUCYT101K00011GNTC	1.0x0.5x0.11	100±10%	100±20%				
RUCYT101K00012GNTC	1.0x0.5x0.11	100±10%	200±20%	±10%	100	-70±50	100
RUCYT201K00010GNTC	1.0x1.0x0.12	200±10%	50±20%	±10%	100	-70±30	100
RUCYT201K00013GNTC	1.0x1.0x0.12	200±10%	100±20%				
RUCYT201K00014GNTC	1.0x1.0x0.12	200±10%	200±20%				

Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

(Каталоги по продукции)

Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu



• ВЧ интегральные конденсаторы

Каталог №С01Е

Датчики

Измерительные элементы для различных приложений

Обзор

Применяя пьезоэлектрические и магнитнорезистивные принципы измерений, компания Murata разработала ряд технологий, которые позволяют детектировать нагрев, ИК и УЗ волны, вибрацию, ускорение, угловую скорость, угловое вращение, магнитное и электрическое поля. Такие компоненты находят широкое применение в бытовой технике, аудио- и видеооборудовании, а также в автоэлектронике.

Линейка продукции `

- •ИК датчики •Ультразвуковые датчики •Датчики вращения •Датчики банкнот •Магнитные ключи
- •Датчики удара Акселерометры Инклинометры Гироскопы Датчики вращения
- Датчики температуры (термисторы)

Обзор продукции

Датчики банкнот

Датчики предназначены для определения типа банкнот и других шаблонов, выполненных магнитной краской. Датчики интегрируют в корпусе InSb (антимонид индия) магниторезистивные элементы с постоянный магнит, что позволяет легко считывать магнитные данные. Датчики отличаются широким динамическим диапазоном, широким рабочим полем и высоким выходным сигналом, что позволяет их использовать для детектирования как ферромагнитных, так и магнитных образцов.

NTC/PTC термисторы

NTC/PTC термисторы используются для защиты от перегрева. Murata предлагает различные модели термисторов для широкого температурного диапазона.

Более подробная информация по термисторам на стр. 60

(Каталог по продукции

Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu.

- MEMS датчики и измерительные элементы Каталог №S47E
- Датчики положения Каталог №R51E
- Пироэлектрические ИК датчики
- Каталог №S21E Каталог №R44E

- NTC термисторы
- --×-----N
- Позисторы POSISTOR для цепей защиты

Датчики положения

Выходное напряжение контактных датчиков вращения прямо пропорционально углу поворота ротора потенциометра.

SV canua

Магнитные ключи (AMR датчики)

Магнитные ключи используются для определения открытого и закрытого состояния в таких устройствах, как мобильные телефоны, ноутбуки и цифровые видеокамеры.

Murata предлагает широкий выбор моделей с различными особенностями, такими как выбор направления магнитного поля, корпус, скорость выборки и чувствительность.

MR серия

Акселерометры

Акселерометры выпускаются по запатентованной производителем 3-D MEMS технологии.

Акселерометры отличаются превосходными рабочими характеристиками и высокой надежностью при работе во влажной среде и при температурных колебаниях, что позволяет достичь высокой точности измерений.

SCA серия

Гироскопы

Гироскопы и модули (включающие гироскоп и акселерометр в одном корпусе) изготавливаются по уникальной запатентованной 3-D MEMS технологии. Высокая точность и отличные рабочие характеристики позволяют использовать датчики в системах навигации и позиционирования.

SCC серия

Сканеры Многофункц. оборуд-е Принтеры Факсы Факсы Электронные доски
Сканеры Многофункц. оборуд-е Принтеры Факсы Электронные доски
Сканеры Многофунк Принтеры Факсы Электронны
Мног Прин Прин Факсі
• • • •
•
• • • •
• • •
•
• •
• • • •

Применение																								
			Быт	овая	элек	трон	ника				Бе	зопа	снос	ТЬ	<i>)</i> элек	Авто- трон		Игру	⁄шки		Прс	чее		
Холодильники	Электрич. рисоварка	Кондиционеры	Очистители воздуха	Увлажнители	Очистители	Прачечное обор-е	Вентиляторы	Нагреватели	Сантехника	Освещение	Камеры слежения	Охранное освещение	Охранные датчики	Датчики обнаружения	Навигационные системы	Климат-контроль	Парктроники	Радиоуправление (простр.положение)	Игровые контроллеры	Станки	ATM, CD	Торговые автоматы	Игровые автоматы	Датчики Murata Продукция
•	•	•		•				•	•		•	•	•											Пироэлектрические ИК датчики
		•			•					•				•						•	•	•		УЗ датчики
•		•		•		•		•	•	•	•	•	•	•				•		•				в открытом корпусе
																	•							УЗ датчики в брызгозащищенном корпусе
																					•			ВЧ ультразвуковые датчики
																				•				Датчики вращения
																								Датчики банкнот
•	•		•	•		•			•					•						•	•			Датчики магнитного поля (AMR)
																								Датчики удара
																				•				Акселерометры
																				•				Инклинометры
						•									•									Гироскопы
•						•		•	•	•	•				•	•			•					Датчики угла
		•			•										•									NTC TODAYCTON
																								NTC термисторы
		•		•		•			•															РТС термисторы
																								POSISTOR

Упрощение схемотехники с помощью компонентов терморегуляции

Обзор

Применение РТС и NTC термисторов, выполненных на основе полупроводниковой керамики, обеспечивает необходимую защиту электронного оборудования. Для разработки предлагаются удобные средства моделирования.

(Линейка продукции)

- NTC термисторы для термокомпенсации, датчиков температуры, защиты по току и автоэлектроники
- РТС термисторы POSISTOR для защиты от перегрева,

NTC термисторы (для датчиков температуры/термокомпенсации)

ЧИП корпуса

ЧИП NTC термисторы имеют никелевый барьерный слой на выводах, обеспечивающий превосходное качество пайки, а также отличаются высокой стабильностью параметров при работе в тяжелых условиях.

NCP03 серия

NCP15 серия

NCP18 серия

NCP21 серия

(MM)

Серия	Типоразмер дюймы (мм)	Сопр-е (25°С), Ом	В-константа (25-50°С) (К)	Рабочий ток (25°C), мА	Номин. мощность (25°С), мВт	Мощность рассеяния (25°С), мВт/°С	Диапазон рабочих температур, °С
NCP02	01005 (0402)	10k/100k	3380/4250	0.31/0.01	100	1	-40+125
NCP03	0201 (0603)	1.0k - 220k	3500 - 4485	0.06 - 9.5	100	1	-40+125
NCP15	0402 (1005)	22 - 470k	3100 - 4500	0.04 - 6.7	100	1	-40+125
NCP18	0603 (1608)	100 - 470k	3250 - 4500	0.04 - 3.1	100	1	-40+125
NCP21	0805 (2012)	220 - 100k	3500 - 4250	0.14- 3.0	200	2	-40+125

Номинальная мощность - это мощность, которая приводит к нагреву термистора до 125°C при температуре окружающей среды 25°C.

Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

(Каталоги по продукции)

Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu

- NTC термисторы
- Защитные устройства POSISTOR
- PTC термисторы (POSISTOR), информация по применению
- РТС NTC, применение компонентов для поверхностного монтажа

Каталог №R44E

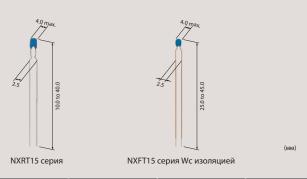
Каталог №R90E

Каталог №R16E

Каталог №R01E

Бусины

Миниатюрные NTC термисторы с тонкими гибкими выводами и маленьким корпусом.

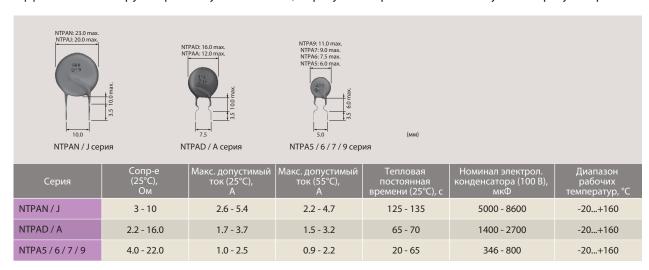


Серия	Сопр-е (25°С), Ом	В-константа (25-50°С) (К)	Рабочий ток (25°С), мА	Тепловая постоянная времени (25°C), с	Общая длина, мм	Диапазон рабочих температур, °С
NXFT15	10k - 100k	3380 - 4250	0.04 - 0.12	4	25 - 150	-40+125

Рабочий ток датчика увеличивает температуру термистора на 0,1°C. Выпускаются термисторы серии NXF для применения в автоэлектронике.

Выводные термисторы

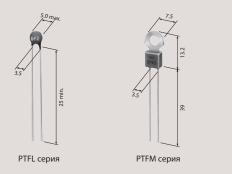
Термисторы для стандартных температурных датчиков.


Серия	Сопр-е (25°С), Ом	В-константа (25-50°С) (К)	Рабочий ток (25°C), мА	Тепловая постоянная времени (25°C), с	Общая длина, мм	Диапазон рабочих температур, °C
NXRT15	2k - 100k	3380 - 4250	0.04 - 0.27	4	10 - 40	-40+125
NXRT15 (изоляция*)	2k - 100k	3380 - 4250	0.05 - 0.36	4	25 - 45	-40+125

Рабочий ток датчика увеличивает температуру термистора на 0,1°C. Выпускаются термисторы серии NXF для применения в автоэлектронике. *Изоляция проволочных выводов.

NTC термисторы (для защиты от выбросов тока)

Эффективно блокируют броски пускового тока, образуемые при включении импульсных регуляторов.


PTC термисторы POSISTOR (для защиты от перегрева)

Выводные термисторы

Для защиты силовых транзисторов, стерео усилителей и др. компонентов от перегрева, а также для контроля температурного режима других компонентов.

Серия		Диапазон измеряемых температур (°C)						(°C)		Макс. напряжение,	Сопр-е (25°С) макс,	Сопр-е (TS-10°C),	Coпр-е (TS°C),	
Серил	60	70	80	90	100	110	120	130	140	150	В	Ом	макс, Ом	макс, Ом
PTFp_471Q	•	-	-	-	-	-	-				16	100	330	470
PTFp_222Q	•	-	-	-	•	-	-				16	330	1.5k	2.2k

Пробелы _ в наименовании относятся к типу: L - выводные, M - лепестковые выводы Диапазон рабочих температур: -10... Ts+10°C

PTC термисторы POSISTOR для защиты от бросков тока

Обеспечивают защиту от бросков пускового тока в источниках питания.

термисторы

PTC термисторы POSISTOR (от перегрузки по току)

Для поверхностного монтажа

Компоненты защиты от перегрузки по току с функцией самовосстановления для токоограничительных резисторов.

ö

PRG15 серия

PRG1	8	ce	рия

Серия	Макс. напряжение, В	Рабочий ток (60°С), мА	Ток срабатывания (-10°С), мА	Макс. ток, А	Сопр-е (25°С), ОмА	Типоразмер дюймы (мм)
PRG15	6 - 30	17 - 88	78 - 318	0.6 - 3.5	2.2 - 68	0402 (1005)
PRG18	6 - 30	7 - 220	25 - 850	0.06 - 7.5	2.2 - 470	0603 (1608)
PRG21	6 - 30	30 - 500	110 - 2000	1.1 - 10	0.2 - 22	0805 (2012)

Параметр максимального тока указывает на типичный ток трансформатора. В серию PRG также входят модели для применения в автоэлектронике

Выводные

Для применения в источниках питания и в схемах защиты двигателей.

(MM

PTGL серия

*Приведен чертеж с одной из возможных форм выводов.

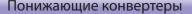
Серия	Макс. напряжение, В	Рабочий ток (60°C), мА	Ток срабатывания (-10°С), мА	Макс. ток, А	Сопр-е (25°С), Ом
	16	370 - 1200	1040 - 3360	2.0 - 10.0	0.15 - 1.0
	24	80 - 180	320 - 710	2.0	2.2 - 10
	30	122 - 685	240 - 1900	0.7 - 7.0	0.8 - 13
	32	30 - 60	140 - 240	1.5	15 - 47
	51	213 - 749	332 - 1168	1.0 - 5.0	1.2 - 10
PTGL	56	90 - 380	240 - 980	1.0 - 2.5	3.3 - 22
FIGL	60	88 - 439	175 - 867	1.0 - 5.0	2.2 - 22
	80	50 - 310	135 - 860	0.7 - 5.5	3.7 - 55
	125	30 - 420	75 - 1050	0.3 - 2.0	3.3 - 180
	140	74 - 340	147 - 780	0.5 - 3.5	4.7 - 56
	250	90 - 100	280 - 300	0.5 - 0.6	12 -39
	265	28 - 300	78 - 830	0.2 - 4.1	6.0 - 180

Параметр максимального тока указывает на типичный ток трансформатора. В серию PTGL также входят модели для применения в автоэлектронике.

Источники питания

Экологически безопасные и высококачественные источники питания

Обзор


Для удовлетворения рыночного спроса Murata предлагает источники питания и устройства преобразования энергии, которые могут использоваться в видеотехнике, бытовых приборах, коммуникационном оборудовании. Murata предлагает стандартные и специализированные приборы, разработанные на основе уникальных компонентов собственного производства и обеспечивающие высокую плотность монтажа. Ионисторы - это источники питания, обладающие такими важными преимуществами, как миниатюрные размеры, высокое КПД и широкая функциональность.

(Линейка продукции)

- Микро DC-DC преобразователи
 DC-DC преобразователи
 Высоковольтные трансформаторы
- Высоковольтные источники питания
 Импульсные источники питания
 Ионисторы

Микро DC-DC преобразователи

Микро DC-DC конвертеры Murata - это небольшие модули на уникальной ферритовой подложке со встроенной силовой катушкой индуктивности и входными и выходными конденсаторами. Сверхминиатюрный размер и превосходные параметры подавления шумов делают такие источники питания идеальным решением для мобильных телефонов и смартфонов, планшетных компьютеров, коммуникационных устройств и портативных приборов.

20

LXDC2HN серия

Повышающие конвертеры

(MM)

Ельсчий сери

Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

(Каталоги по продукции)

Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu

- Высокоэффективные ионисторы серии DMF
- Высокоэффективные ионисторы серии DMT

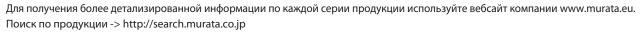
Каталог № О83E Каталог №О84E

.Источники питания

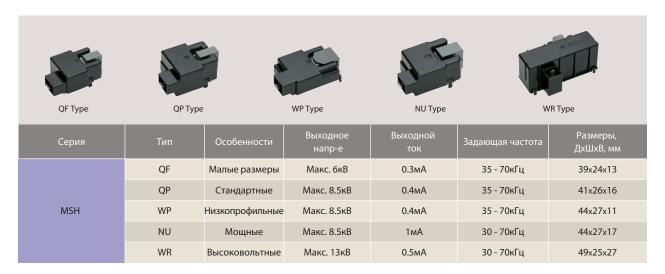
DC-DC конвертеры

DC-DC преобразователи являются важнейшим блоком электронного оборудования. Преобразователи Murata устанавливают новые стандарты в области миниатюризации, низкопрофильности, высокой эффективности, экономии энергопотребления и малошумных источников питания. Murata предлагает как стандартные, так и индивидуальные решения в сверхплоских корпусах и компоненты для FPGA.

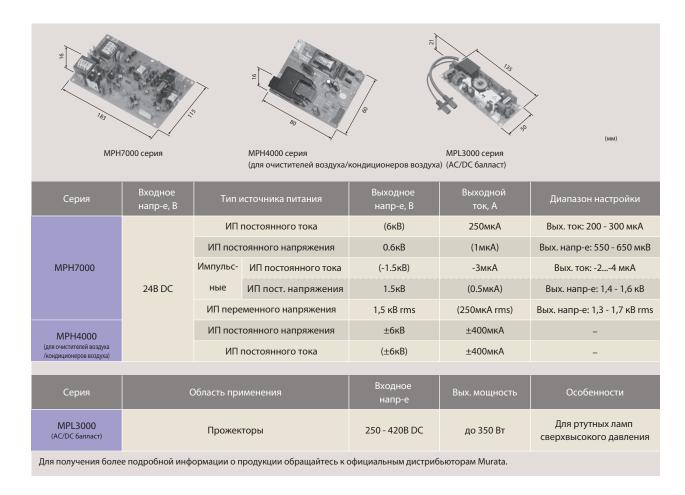
Наименование	Корпус	Входное напряжение, В	Номин. выходаная мощность, Вт	Выходное напряжение, В	Ток, А	КПД, %	Размер, ДхШхВ, мм			
MPDRX002S	SMD	3 - 5.5	28.8	0.8 - 1.8	16	90	33x13.5x8.5			
MPDRX103S	SIL	10.8 - 13.2	28.8	0.8 - 1.8	16	86	50.8x5.8x14			
MPDRX312S	SMD	3 - 5.5	28.8	0.8 - 1.8	16	86.5	27.8x15.4x4.2			
MPDTY461S	SMD	4.5 - 14	94	1.6 - 3.63	26	90.5	33.02x13.46x4.2			
MPDTY462S	SMD	4.5 - 14	43	0.75 - 1.65	26	85.5	33.02x13.46x4.2			
MYGTM01210BZN	SIL	17 - 40	120	5 - 12	10	97.3	40x40.3x29.2			
MYGTR01205BZN	SIL	17 - 40	36	5 - 12	3 - 5.2	93	25.1x12x27			
MYSSM0123EBENL	SMD	14 - 40	42	5 - 12	3.5	96	30.2x20.9x12			
MYUSP3R303FMP	SMD	3 - 5.5	9.9	0.7 - 3.3	3	94	11x8.5x5.6			
OKL-T/3-W5N-C	SMD	2.7 - 5.5	10.9	0.6 - 3.63	3	95.3	12.2x12.2x6.2			
OKL-T/6-W12P-C	SMD	4.5 - 14	33	0.591 - 5.5	6	93	12.2x12.2x7.2			
OKL2-T/12-W5N-C	SMD	2.4 - 5.5	39.6	0.6 - 3.63	12	94	20.32x11.43x8.55			
OKL2-T/12-W12N2-C	SMD	4.5 - 14	60	0.69 - 5.5	12	95	20.32x11.43x8.55			
OKL2-T/20-W5N-C	SMD	2.4 - 5.5	66	0.6 - 3.63	20	93.1	33.02x13.46x8.75			
OKL2-T/20-W5P-C	SMD	2.4 - 5.5	66	0.6 - 3.63	20	93.1	33.02x13.46x8.75			
OKL2-T/20-W12N2-C	SMD	4.5 - 14	100	0.69 - 5.5	20	94	33.02x13.46x8.75			
OKL2-T/20-W12P-C	SMD	4.5 - 14	110	0.69 - 5.5	20	94	33.02x13.46x8.75			
В таблице представлены т	В таблице представлены только некоторые модели преобразователей.									

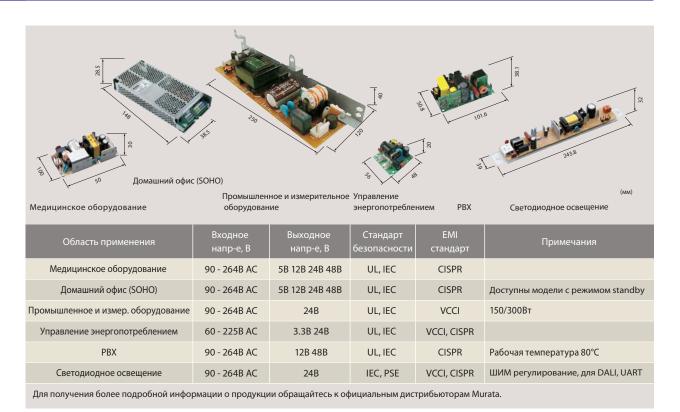

•Источники питания

Наименование	Корпус	Входное напряжение, В	Номин. выходаная мощность, Вт	Выходное напряжение, В	Ток, А	КПД, %	Напр-е изоляции, В пост.тока	Типо- размер	Размеры, ДхШхВ, мм
MYBQC01138AZTB	Insert	48B (36B - 75B)	400	10.6±6%	38	95	1500	1/4	58.4х36.8х14 макс.
MYBQC01138AZTF	Insert	48B (36B - 75B)	400	10.6±6%	38	95	1500	1/4	58.4х36.8х17 макс.
MYBEA01212AZT	Insert	48B (36B - 75B)	140	12±3%	12	92.5	1500	1/8	58.4х22.8х9 макс.
MYBEA01212AZTB	Insert	48B (36B - 75B)	140	12±3%	12	92.5	1500	1/8	58.4х22.8х9 макс.
MYBEA01210CZT	Insert	24B (18B - 36B)	120	12±3%	10	93	1500	1/8	58.4х22.8х9 макс.
MYBEA01210CZTB	Insert	24B (18B - 36B)	120	12±3%	10	93	1500	1/8	58.4х22.8х9 макс.
MYBEB00520AZT	Insert	48B (36B - 75B)	100	5±3%	20	93	1500	1/8	57x22.8x10 макс.
MYBSC01208AZT	Insert	48B (36B - 75B)	100	12±3%	8	92.5	1500	1/16	33х23.2х10 макс.
MYBSC01208ABT	SMD	48B (36B - 75B)	100	12±3%	8	92.5	1500	1/16	33х23.2х10 макс.
MYBSC00520AZT	Insert	48B (36B - 75B)	100	5±3%	20	92	1500	1/16	33х22.8х10 макс.
MYBSC00520ABT	SMD	48B (36B - 75B)	100	5±3%	20	92	1500	1/16	33х22.8х10 макс.


В таблице представлены только некоторые модели преобразователей.

•Источники питания


Высоковольтные трансформаторы


Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

Высоковольтные источники питания

.Источники питания

Импульсные источники питания

Ионисторы

Ионисторы (двухслойные конденсаторы), также называемые суперконденсаторами, - это накопители энергии с высокой плотностью мощности. Разработчики Murata сконцентрировали свое внимание на двухслойных накопителях мощности, а также совместно с CAP-XX Limited разработали EDLC технологию. Результатом их работы стало появление EDLC технологии, которая позволяет производить конденсаторы с низким ESR и высокой емкостью при использовании сверхмалого корпуса.

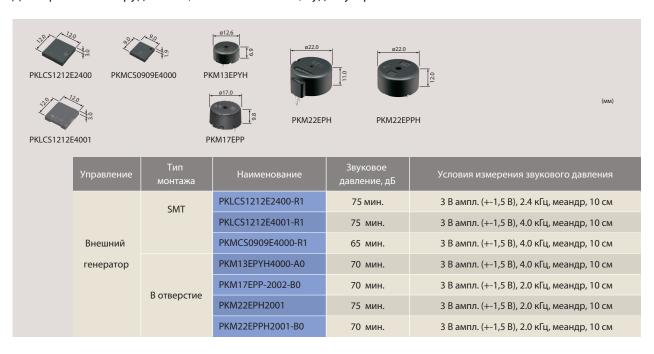
Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

Подробная информация по модулям ионизаторов на стр.74.

Акустические компоненты

Акустические приборы с использованием пьезоэлектрических керамических материалов, меняющих свои размеры под воздействием напряжения.

Обзор


Широкий выбор пьезоакустических компонентов, произведенных с помощью уникальных керамических материалов Murata.

(Линейка продукции)

- Пьезоэлектрические излучатели
- Пьезоэлектрические излучатели с генератором
- Пьезоэлектрические диафрагмы

Пьезоэлектрические излучатели

Низкая мощность потребления, малый вес Для офисного оборудования, бытовой техники, аудио устройств

і Акустические компоненты

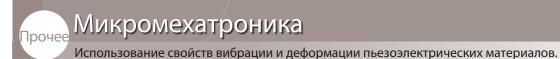
Пьезоэлектрические излучатели с генератором

Пьезоэлектрические излучатели со встроенным генератором, требующие подключения только источника постоянного напряжения.

Используются в газовых оповещателях, сигнализациях, бытовой технике.

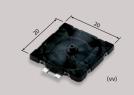
Пьезоэлектрические излучатели с генератором

Малая мощность потребления, малый вес Для применения в часах, калькуляторах, цифровых камерах, сигнализациях


Для получения более детализированной информации по каждой серии продукции используйте вебсайт компании www.murata.eu. Поиск по продукции -> http://search.murata.co.jp

(Каталоги по продукции)

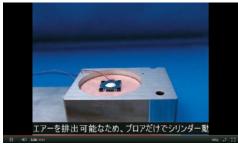
Для получения подробной технической информации по продукции используйте печатные или электронные каталоги в формате PDF на сайте www.murata.eu



- Пьезоэлектрические акустические компоненты Каталог №Р37Е
- Пьезоэлектрические акустические компоненты, информация по применению Каталог №Р15E

Микровентиляторы

Миниатюрные насосы без двигателя

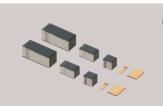

СОсобенности

Микровентиляторы выполняют функцию воздушного насоса, которая реализована посредством ультразвуковой вибрации пьезоэлектрической керамики. Эта технология позволяет получить высокое воздушного давление в плоском и сверхкомпактном корпусе.

(Применение

Ароматизаторы, распылители, датчики газа и алкоголя, ионизаторы воздуха и др.

Наименование	Габаритные размеры	Воздушный поток	Статич. давление	Рабочее напряжение
MZB1001T02	20(Ш)х20(Д)х1,85(В) мм без штуцера	>0.7 л/мин. при 15В ампл.	>1.42 кПа при 15В ампл.	10 - 20 В ампл.



На сайте компании представлена более полная информация по микровентиляторам.

Пьезоэлектрические актуаторы

Малое время отклика и высокая точность позиционирования.

(Особенности

Пьезоэлектрические актуаторы выполнены из пьезоэлектрической керамики, которая широко используется в устройствах позиционирования.

*Возможно производство по спецификации заказчика.

Беспроводные модули

Для самого широкого круга применений, например, автоэлектроники, мобильных устройств и бытовой техники

Wi-Fi модули / Bluethooth Wi-Fi комбо модули

(Особенности

Компактные, высокоэффективные, гибкие в применении

Применение

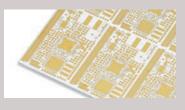
Мобильные телефоны, автоэлектроника, планшетные компьютеры, электрооборудование, интеллектуальные электросети

Wi-Fi модули / Bluethooth малопотребляющие модули

Особенности

Компактные, высокоэффективные, гибкие в применении

Мобильные телефоны, автоэлектроника, планшетные компьютеры, медицинское оборудование, устройства беспроводного управления


Обращайтесь за консультациями по беспроводным модулям к официальным дистрибьюторам и производителю.

Керамические изделия

Для повышенной интеграции и миниатюризации в автомобильной электронике и ВЧ модулях.

Многослойные платы из низкотемпературной обожженной керамики (LTCC)

LTCC (низкотемпературная керамика) - это многослойные стеклокерамические подложки с низкоимпедансными металлическими проводниками. Уникальность подложек Murata состоит в использовании технологического процесса "Zero Shrinking Sintering Process", который сохраняет размеры керамических пленок при минимальном сжатии.

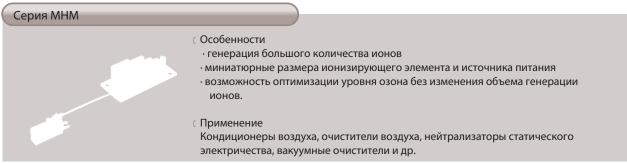
Многослойные подложки LFC используются в различном электронном оборудовании, например, в качестве подложек для высоконадежных электронных блоков управления и ВЧ модулях мобильных телефонов.

Серия LFC

Серия подложек LFC соответствует самым высоким требованиям по интеграции и миниатюризации, предъявляемым производителями автоэлектроники.

Серия AWG

Подложки серии AWG применяются в миниатюрных РЧ модулях и отличаются сверхтонким керамическим покрытием, наличием ламинирования из композитного материала и увеличенной прочностью платы.



Модули ионизаторов lonissimo

Высокая концентрация ионов, компактный дизайн, контроль уровня озона

Ionissimo - это модуль ионизатора беспрецедентно малого размера и высокой эффективности, способный генерировать большое количество ионов. Модуль производится по собственной высоковольтной технологии Murata. Генератор ионов соединен с источником питания для удобства интеграции модуля в разработку.

Посмотрите демонстрационный видео-ролик ионизатора lonissimo на сайте www.murata.eu.

Переменные конденсаторы

Емкость конденсатора можно настроить посредством регулировки напряжения.

Тонкопленочные переменные конденсаторы могут менять свою емкость в зависимости от напряжения. Предназначены для использования с частотными согласователями для ВЧ полосы 13,56 МГц.

RFID устройства

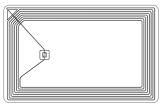
Модули со встроенным кристаллом для высокофункциональных и надежных RFID меток

MAGICSTRAP для СВЧ диапазона

LXMS31 серия

MAGICSTRAP модули легко монтируются посредством пайки или клейкой поверхности (как проводящей, так и непроводящей). Даже при использовании моделей с непроводящей клеевой поверхностью обмен данными будет гарантирован при установке модуля на антенну, RFID метка будет функционировать.

MAGICSTRAP модули соответствуют международному стандарту EPC/gC1G2. Они производятся в сверхминиатюрном (3.2х1.6х0.55мм) прочном корпусе с функцией трансформации импеданса. MAGICSTRAP могут устанавливаться на антенну (\pm 500мкм). Кроме того, MAGICSTRAP поддерживают широкий СВЧ (860-960 МГц) диапазон для применения готовых изделий в разных странах мира.



MAGISTRAP для ВЧ диапазона

LXMS33 серия

MAGISTRAP для ВЧ диапазона - одни из самых миниатюрных RFID модулей (3,2х3,2х0,7мм). Благодаря применению уникальных технологий изготовления многослойных плат и высокочастотных модулей размер RFID модулей от Murata составляет 1/10 часть стандартных RFID меток. Кроме того, модули имеют керамическую структуру, устойчивую к воздействиям окружающей среды и обеспечивающую стабильную работу при изменениях среды.

Горизонтальная структура

Многослойная структура

(Применение

Отслеживание объектов небольших габаритов, сертификация, аутентификация и др.

 Электрические характеристики
 Диапазон считывания: 15 мм (выход записи и считывания 200 мВ, размер антенны 35х54 мм)

Дополнительную информацию по RFID модулям можно получить на сайте производителя.

Модули беспроводной передачи энергии

Реализация систем беспроводной зарядки

Компания Murata начала массовое производство беспроводных модулях зарядки емкостного типа* мощностью до 10 Вт. Эти модули позволяют создавать реальные беспроводные системы передачи электроэнергии, которые заряжают

электроприборы, установленные на специальной подставке без использования проводов.

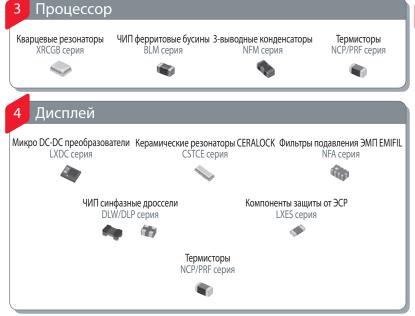
*Модули емкостной связи

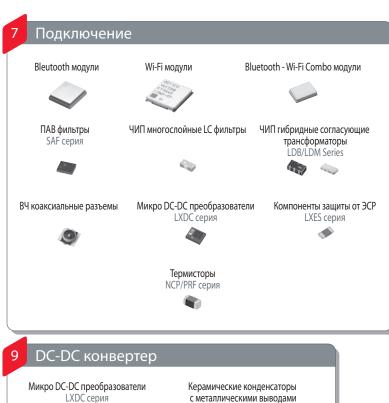
Емкостная связь - это метод передачи энергии посредством электрического поля между электродами. Поскольку электрическое поле создается между электродами, такие модули также называют модулями связи по электрическому полю.

LXWS серия

- (Особенности
- широкая площадь зарядки
- простота монтажа
- · отсутствие нагрева в области беспроводной зарядки

Посмотрите демонстрационные видео-ролики на сайте производителя.



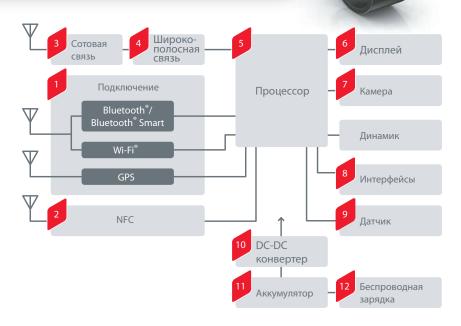


KRM серия

Термисторы

NCP/PRF серия

Полимерные алюминиевые

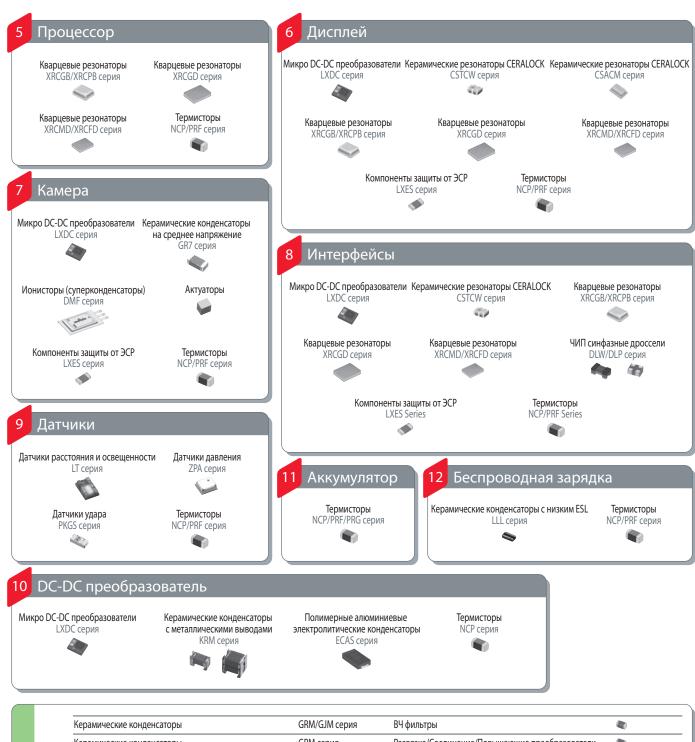

электролитические конденсаторы

ECAS серия

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи	40		
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные алюминиевые конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ согласование импедансов/Резонансные цепи	(All)		-
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные дроссели	DLW/DLP серия	Подавление помех	4	1	
СВЧ поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

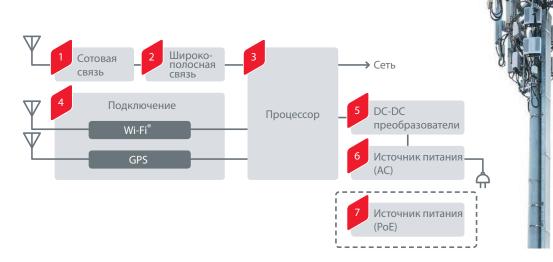
Hoo

Носимые устройства


4 Широкополосная связь

Микро DC-DC преобразователи

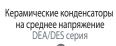
LXDC серия


Термисторы

NCP/PRF серия

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные алюминиевые конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
Ионисторы (суперконденсаторы)	DMF серия	Аккумуляторы питания	Trans.		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ согласование импедансов/Резонансные цепи	M		4
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление шумов			
3-выводные конденсаторы	NFM/NFE серия	Подавление шумов	•	CO	
ЧИП LC фильтры	NFA серия	Подавление шумов	(in)		Т
ЧИП синфазные фильтры	DLW/DLP серия	Подавление шумов	-	10	
СВЧ поглотители	ЕА серия	Подавление шумов			
Ферритовые сердечники	FS серия	Подавление шумов	î		Π
Тонкопленочные слоеные сердечники	FSSA серия	Подавление шумов	1		
Пьезоэлектрические излучатели	PKMCS серия	Акустические компоненты	4		
Пьезоэлектрические диафрагрмы	7ВВ серия	Акустические компоненты			Т

Базовые станции



Источник питания (РоЕ)

Керамические конденсаторы с металлическими выводами КRM серия

1	
	4
	Ŋř.

	1	
Ø		
W		

Кварцевые резонаторы XRCGB Series

	Керам
RZI	Керам

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи	4		
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные алюминиевые конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ согласование импедансов/Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения			
ЧИП ферритовые бусины	BLM серия	Подавление шумов			
3-выводные конденсаторы	NFM/NFE серия	Подавление шумов	•	80	
ЧИП синфазные дроссели	DLW/DLP серия	Подавление шумов	App	御	
СВЧ поглотители	ЕА серия	Подавление шумов			
Ферритовые сердечники	FS серия	Подавление шумов	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление шумов	1		

ИНформация по применению Базовые станции

Керамические конденсаторы с электродами на верхней и нижней части корпуса) GMA серия

конденсаторы СLB серия

Однослойные

Керамические конденсаторы (для AuSn пайки и проволочного соединения) GMD серия

> Пленочные подложки RUSUB RUCYT серия

DC-DC преобразователь

DC-DC преобразователи МҮВ серия

DC-DC преобразователи OKL серия

Микро DC-DC преобразователь LXDC серия

Полимерные электролитические конденсаторы ECAS серия

Термисторы PRF серия

Интерфейс

Керамические конденсаторы с низким ESL LLL/LLA/LLM серия

ЧИП синфазные фильтры DLW/DLP серия

Компоненты защиты от ЭСР LXES серия

Керамические конденсаторы с низким ESL

Керамические конденсаторы (для пайки AuSn припоями и монтажа перемычками)

Ионисторы DMT серия

LLL/LLA/LLM серия

на среднее напряжение

GMD серия

Керамические конденсаторы

Керамические конденсаторы (Top & Bottom Electrode Type for Bonding) GMA серия

Кварцевые резонаторы XRCGB серия

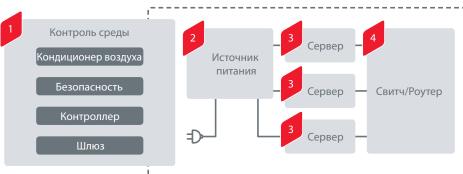
ЧИП синфазные дроссели DLW/DLP серия

Серверы

Датчики удара PKGS серия

Полимерные алюминиевые электролитические конденсаторы ECAS серия

Кварцевые резонаторы XRCGB серия



Информация по применению G-PON

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием электродо	в GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные алюминиевые электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ согласование импедансов/Резонансные цепи	(Apr		1
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление шумов			
3-выводные конденсаторы	NFM/NFE серия	Подавление шумов	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление шумов	4	10	
СВЧ поглотители	ЕА серия	Подавление шумов			
Ферритовые сердечники	FS серия	Подавление шумов			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление шумов	1		

	Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
HIA	Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи	40		
ене	Керамические конденсаторы с эпоксидным покрытием электродов	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
риме	Полимерные алюминиевые электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
d L	ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ согласование импедансов/Резонансные цепи	(All p		(b)
јего	ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
Т	ЧИП ферритовые бусины	BLM серия	Подавление шумов			
亘	3-выводные конденсаторы	NFM/NFE серия	Подавление шумов	•	80	
Ē	ЧИП синфазные фильтры	DLW/DLP серия	Подавление шумов	4	(1)	
Компон	СВЧ поглотители	ЕАсерия	Подавление шумов			
YOM	Ферритовые сердечники	FS серия	Подавление шумов	6		
	Тонкопленочные слоеные сердечники	FSSA серия	Подавление шумов	1		

Информация по применению

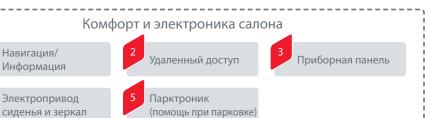
Автоэлектроника

јего применения (высоконадежные

ия СН серия	Развязка/Соединение = Преобразование напряжения а)	125°c 150°c
СН серия	Преобразование напряжения	\$	
		\$	105°c
Н сория			$\overline{}$
птерия	Согласование импедансов	(6)	125°c
Н серия	Подавление шумов	(4)	125°c
/NFE_H серия	Подавление шумов	*	125°c
SH/DLW43SH серия	Подавление синфазных помех		125°c
	/NFE_H серия	/NFE_H серия Подавление шумов	/NFE_H серия Подавление шумов

105°С 105°С макс. 125°С 125°С макс. 150°С 150°С макс.

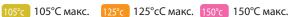
Керамические конденсаторы	GCM серия	Развязка/Соединение		(150°c
Радиальные керамические конденсаторы	RCE серия	Развязка/Соединение		125°c
Радиальные керамические конденсаторы	RH серия	Развязка/Соединение		[150°c
ЧИП индуктивности	LQH32CH серия	Преобразование напряжения	-	(105°c
ЧИП индуктивности	LQG15HH серия	Согласование импедансов	(c)	125°c
ЧИП ферритовые бусины	BLM_SH серия	Подавление шумов	(4)	(125°c
3-выводные конденсаторы	NFM_H/NFE_H серия	Подавление шумов	♠ ♦	(125°c
ЧИП синфазные фильтры	DLW31SH/DLW43SH серия	Подавление синфазных помех		125°c



его применения (высоконадежнь

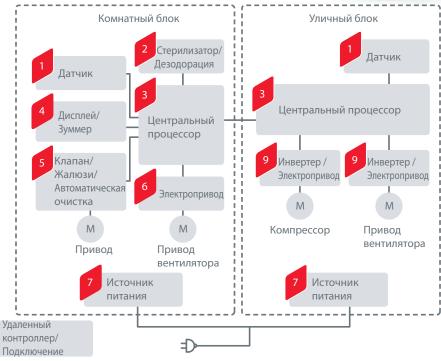
Керамические конденсаторы	GRM серия	Развязка/Соединение	
Керамические конденсаторы на среднее напряжение	GRM серия	Для снабберных цепей	W
Выводные керамические конденсаторы	RCE серия	Подавление шумов/Развязка	
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения	(a)
ЧИП ферритовые бусины	BLM серия	Подавление помех	(4)
Фильтры подавления ЭМП EMIFIL	NFM/NFA/NFL/NFE/NFW/NFR серия	Подавление помех	
ЧИП синфазные фильтры	DLW серия	Подавление синфазных помех	
Ферритовые сердечники	FS серия	Подавление помех	ı

Велосипеды/Электромобили



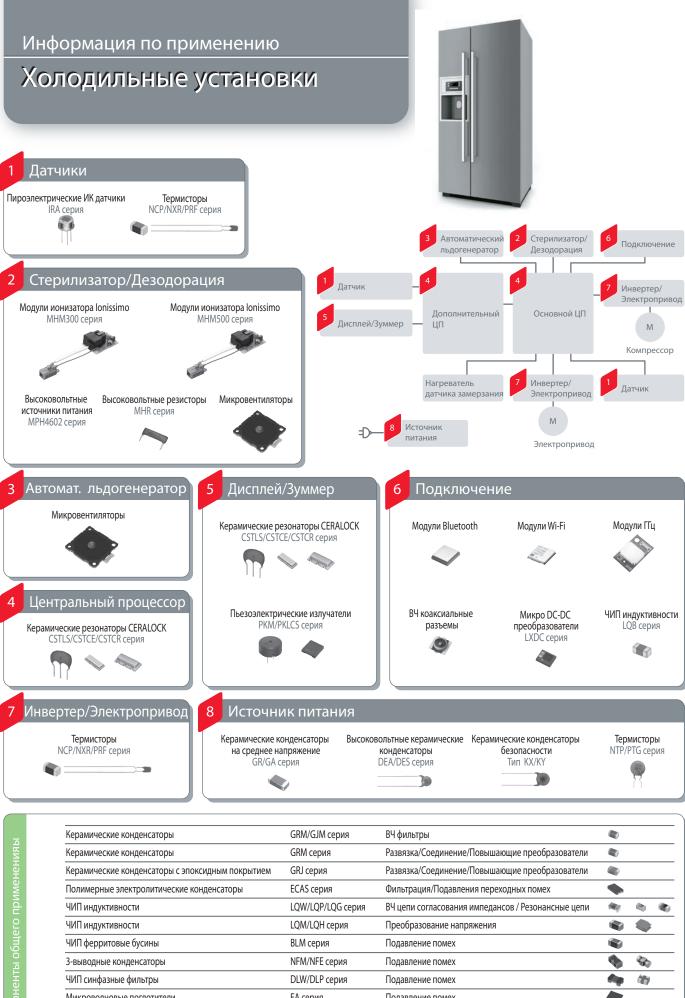
-
≻
¥
툿
_
=
-
7
7
끖
<u>a</u>
<u>a</u>
<u>ط</u>
<u>ط</u>
<u>a</u>
<u>ط</u>
<u>ط</u>
<u>ط</u>
HING (R
<u>ط</u>
HING (R
BUHD!
HING (R
A) BNHAH
a) BMHdHd
a) BMHdHd
A) BNHAHAN
MPHPHIMS (R
MPHPHIMS (R
A) BVHDHDW
MAPHONIA (R
A) BNHOHOWN
A) BNHOHOWN
MAPHONIA (R
в/виненемис
A) BNHOHOWN
в/виненемис
я) виненемици
в/виненемис
я) виненемици о
в применения (в
в применения (в
я) виненемици о

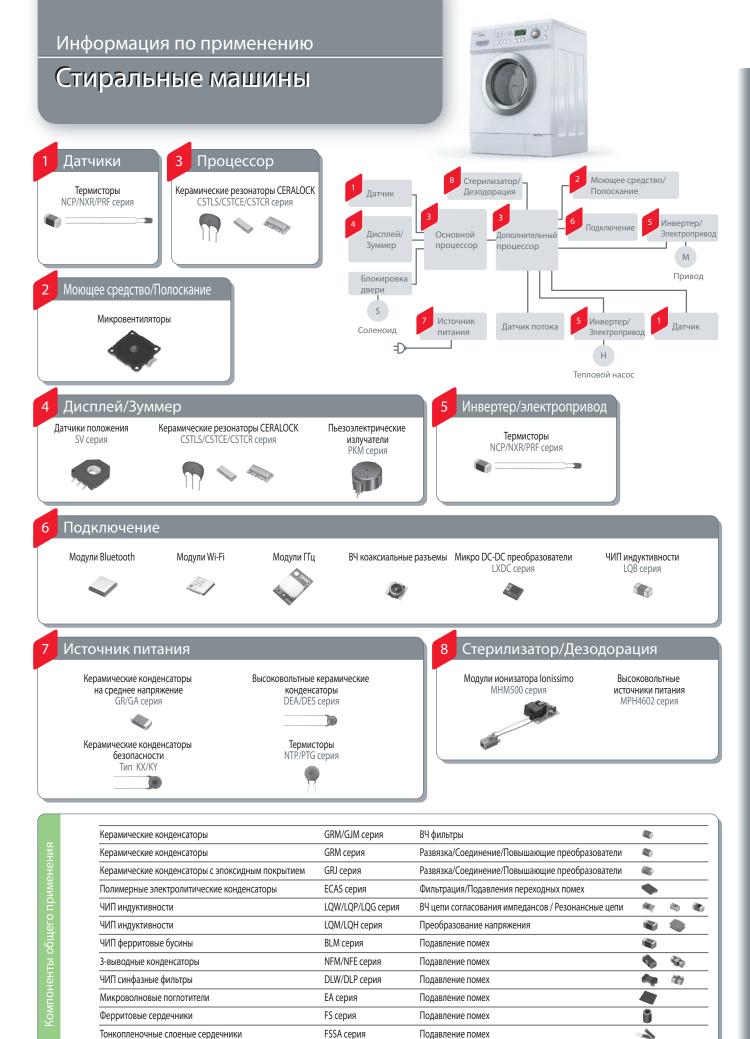
Керамические конденсаторы	GCM серия	Развязка/Соединение		150°c
Выводные керамические конденсаторы	RCE серия	Подавление шумов/Развязка		125°c
Выводные керамические конденсаторы	RH серия	Подавление шумов/Развязка		[150°c
ЧИП индуктивности	LQH32CH серия	Преобразование напряжения	-	105°c
ЧИП индуктивности	LQG15HH серия	Согласование импеданса/Дроссели	(c)	125°c
ЧИП ферритовые бусины	BLM_SH серия	Подавление помех	(4)	125°c
3-выводные конденсаторы	NFM_H/NFE_H серия	Подавление помех	♠ ►	125°c
ЧИП синфазные фильтры	DLW31SH/DLW43SH серия	Подавление синфазных помех		125°c

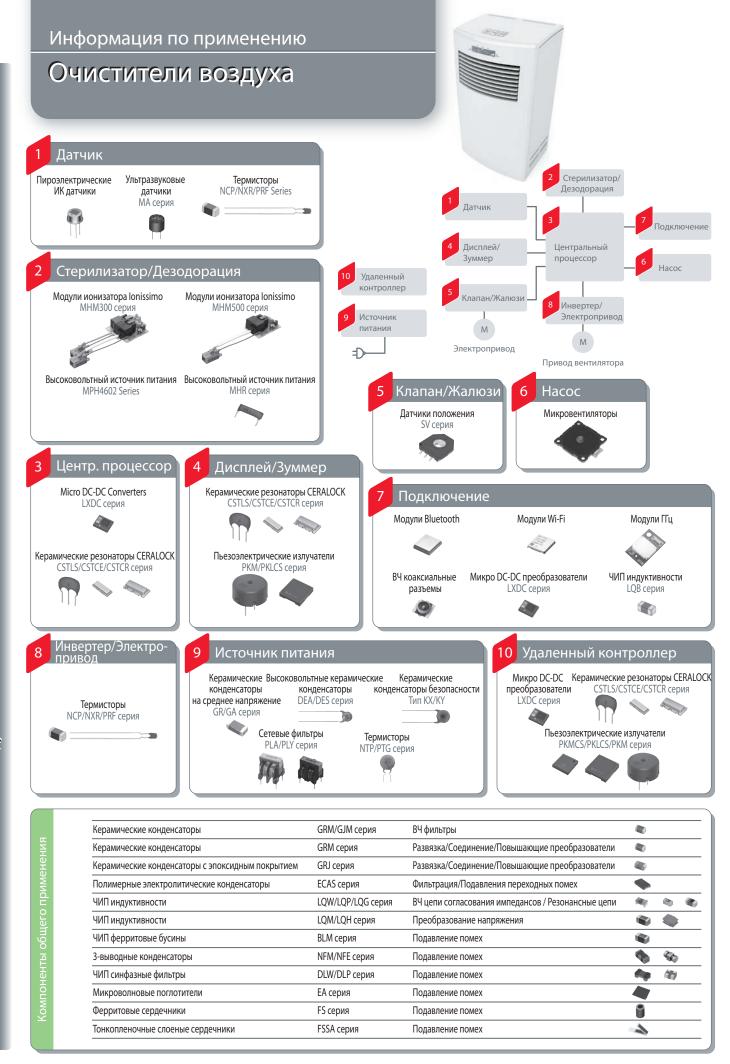


Керамические конденсаторы	GRM серия	Развязка/Соединение	
Керамические конденсаторы на среднее напряжение	GRM серия	Снабберы	W
	RCE серия	Подавление помех/Цепи развязки	
	LQM/LQH V	Преобразование напряжения	(a) (b)
	BLM серия	Подавление помех	(4)
Фильтры подавления ЭМП EMIFIL	NFM/NFA/NFL/NFE/NFW/NFR серия	Подавление помех	60 0 % & 4
	DLW серия	Подавление синфазных помех	•
Ферритовые сердечники	FS серия	Подавление помех	î

Кондиционеры воздуха







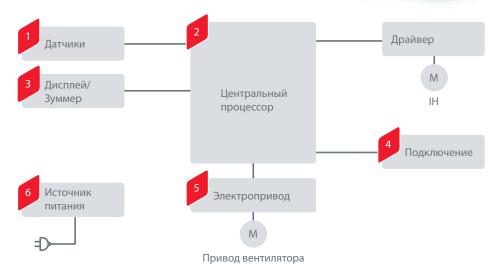
Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	90	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	107	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Микровентиляторы Процессор

Керамические резонаторы CERALOCK

CSTLS/CSTCE/CSTCR серия

Паровой насос



C
VC

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	4	(1)	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	î		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		



0
\circ
O
Ō
\sim
Ŧ

Информация по применению Рисоварки

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	1	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Пульверизатор

Μ

Привод пульверизатора

Центральный

Электропривод

процессор

Стерилизатор/

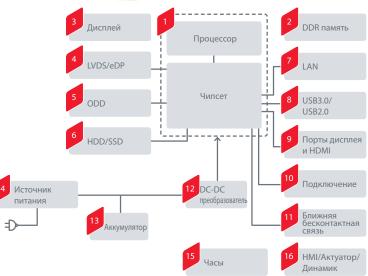
Дезодорация

Дисплей/

Источник

питания

Зуммер



	Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
чения	Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
e He	Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Ž	Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
<u>d</u>	ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	M	-	1
<u>D</u>	ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
回 百 0 0	ЧИП ферритовые бусины	BLM серия	Подавление помех			
<u> </u>	3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
E E	ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	1	
	Микроволновые поглотители	ЕА серия	Подавление помех			
200	Ферритовые сердечники	FS серия	Подавление помех	î		
	Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Планшетные ПК

электролитические

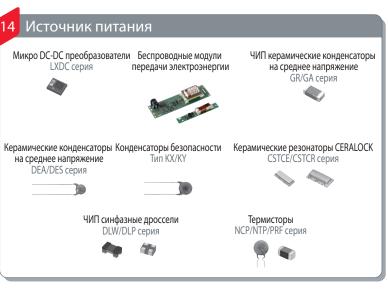
ECAS серия

DLW/DLP серия

1

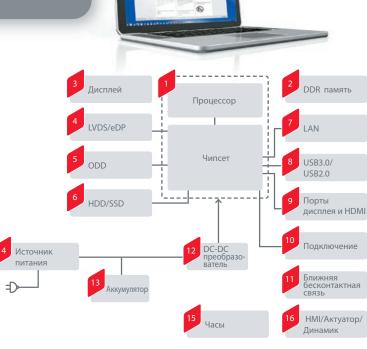
Термисторы

PRG серия



Термисторы NXR/PRF/PRG серия

Керамические резонаторы CERALOCK


CSTCE/CSTCR серия

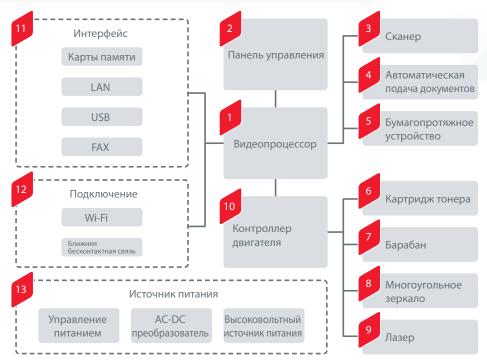
Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		0
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Термисторы

NXR/PRF/PRG серия

Керамические резонаторы CERALOCK

CSTCE/CSTCR серия



Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	(4)		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		1
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Информация по применению

Многофункциональные принтеры

Датчики положения

SV серия

Бумагопротяжное устройство

Магнитные датчики (AMR датчики)

MR серия

Сканер

12 Подключение		
Wi-Fi модули	NFC антенны FLAN серия	Микро DC-DC преобразователи LXDC серия
Керамические резонаторы CERALOCK CSTCE/CSTCR серия	Кварцевые резонаторы XRCGB серия	ЧИП индуктивности LQB серия
Ком	поненты защиты от ЭСР LXES серия	

Керамические конденсаторы	GRM/GJM Series	ВЧ фильтры			
Керамические конденсаторы	GRM Series	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ Series	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS Series	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG Series	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley	8	0
ЧИП индуктивности	LQM/LQH Series	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM Series	Подавление помех			
3-выводные конденсаторы	NFM/NFE Series	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP Series	Подавление помех	-	10	
Микроволновые поглотители	EA Series	Подавление помех			
Ферритовые сердечники	FS Series	Подавление помех	î		
Тонкопленочные слоеные сердечники	FSSA Series	Подавление помех	1		

Управляющий контур

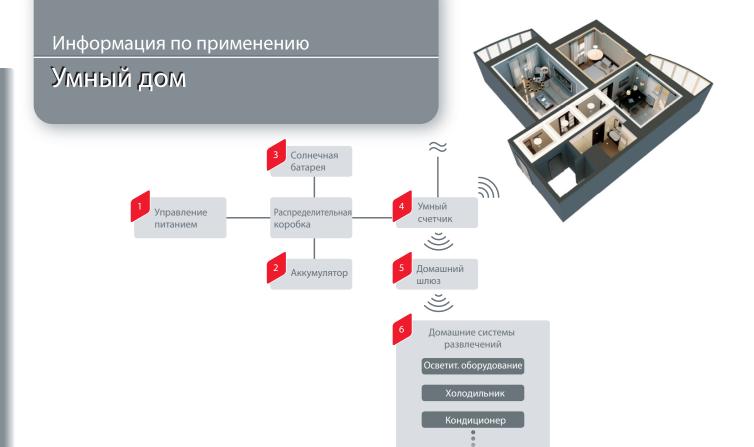
Пироэлектрические инфракрасные

датчики IRS серия

Bluetooth модули

Удаленный контроллер/Подключение

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения			
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	4	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

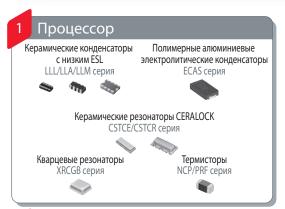


Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	1907		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

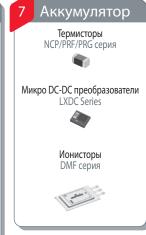
Управление питанием

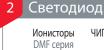
Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		1
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	î		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		_

Умные счетчики



Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения			
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		





Датчик влажност	и
Термисторы NCP/NTP/PRF/PRG/PTG серия	Кварцевые резонаторы CERALOCK CSTCE/CSTCR серия
Кварцевые резонаторы XRCGB серия	ЧИП индуктивности LQM/LQH/LQB серия

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		1
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	1	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

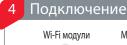
ЧИП керамические конденсаторы на среднее напряжение GR/GA серия

Керамические конденсаторы на среднее напряжение DEA/DES серия

Конденсаторы безопасности Тип КХ/КҮ

Термисторы NCP/NTP/PRF/PRG/PTG серия

Сетевые фильтры PLA/PLH/PLY серия



Пьезоэлектрические излучатели звука PKMCS/PKLCS/PKM Series

Кварцевые резонаторы XRCGB серия

ЧИП индуктивности LQM/LQH/LQB серия

Микро DC-DC преобразователи Керамические резонаторы CERALOCK CSTCE/CSTCR серия Компоненты защиты от ЭСР LXES серия

Конденсаторы безопасности

Пироэлектрические инфракрасные датчики IRA серия

Управление питанием

Микро DC-DC преобразователи LXDC серия

Керамические резонаторы CERALOCK CSTCE/CSTCR серия

Керамические конденсаторы на среднее напряжение GR/GA серия

ЧИП синфазные дроссели

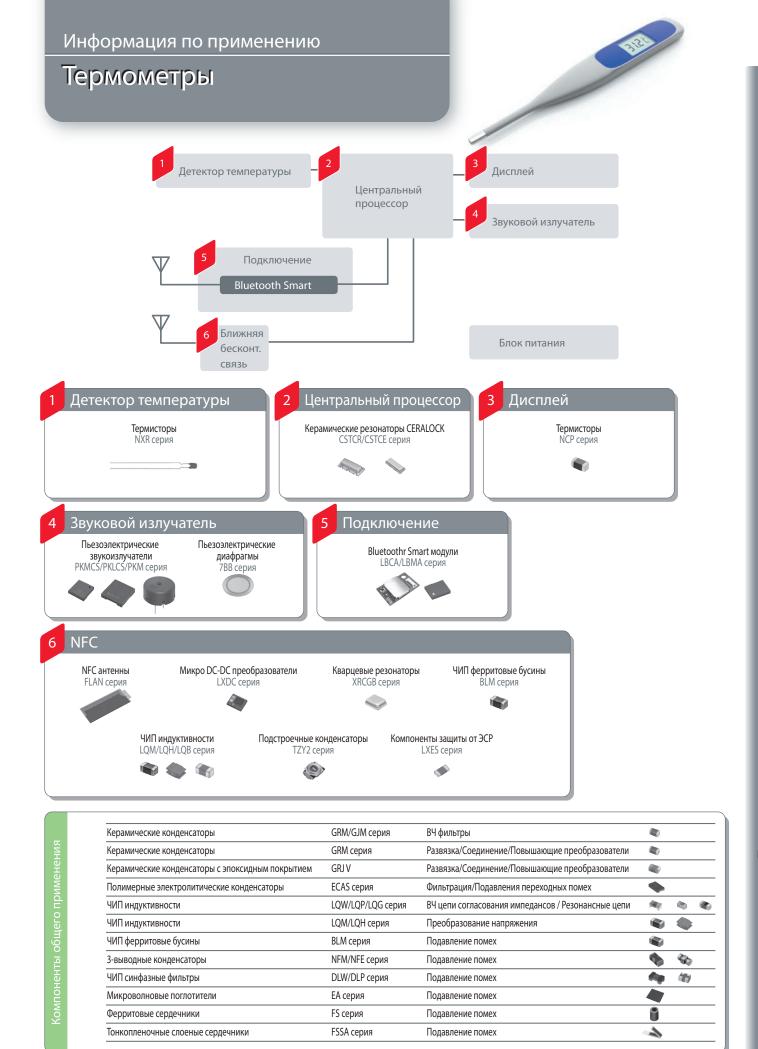
DLW/DLP серия

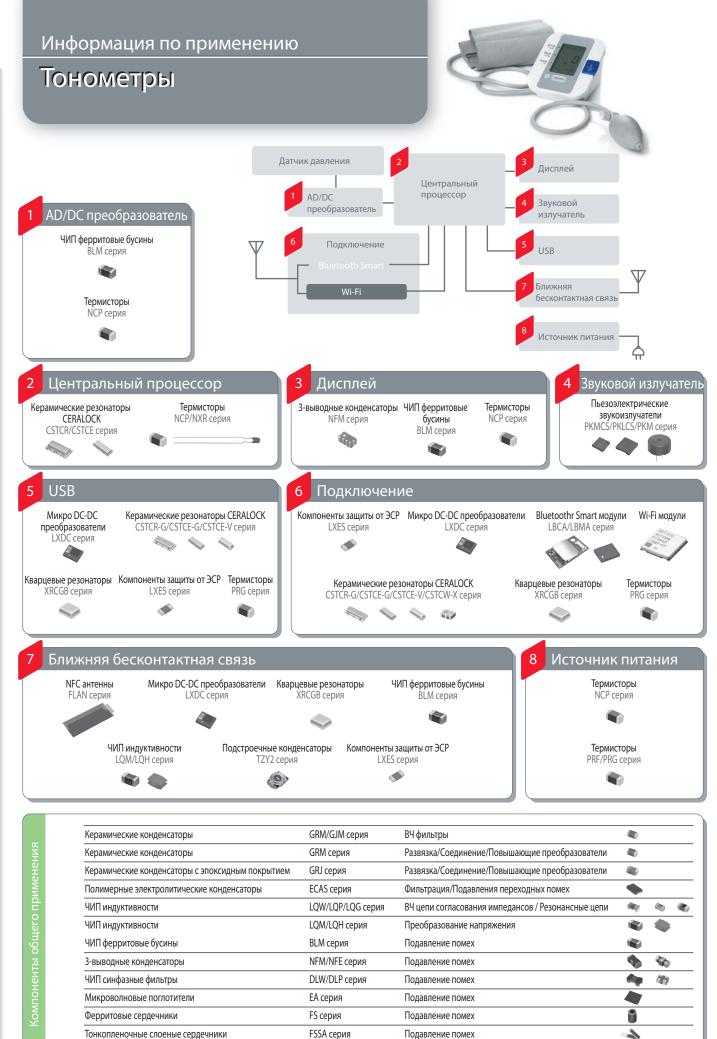
1

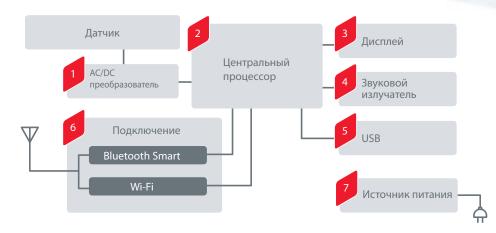
Керамические конденсаторы на среднее напряжение DEA/DES серия

NCP/NTP/PRF серия

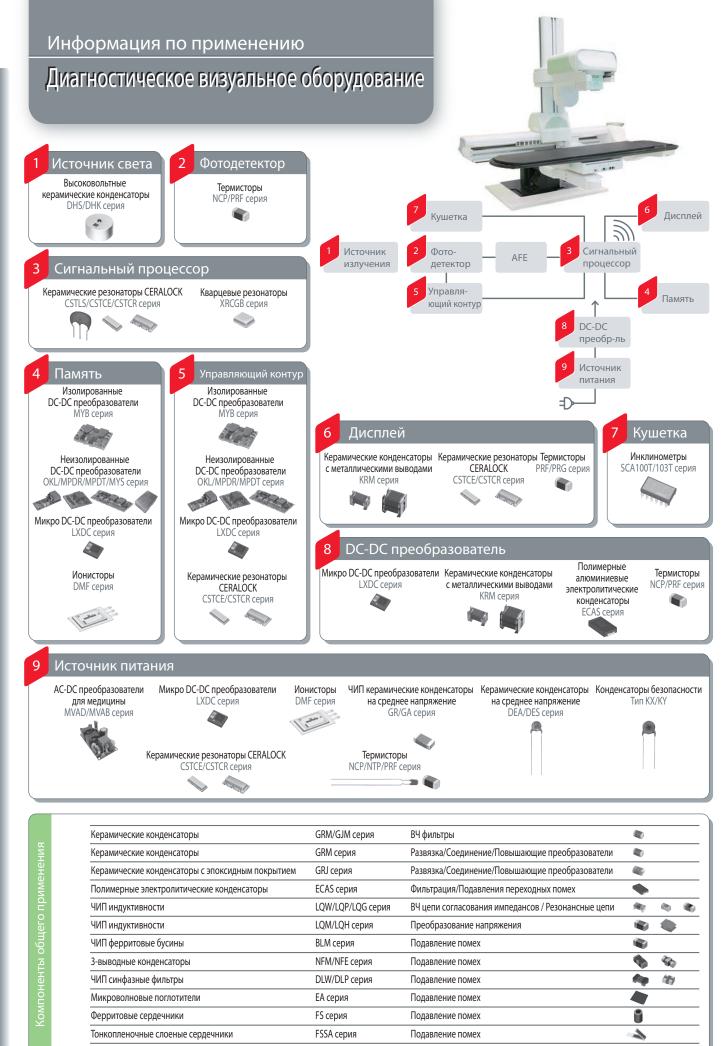
Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	4	(1)	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

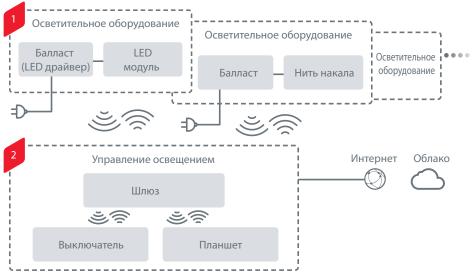

Информация по применению





Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(Alley		(6)
НИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	4	1	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		





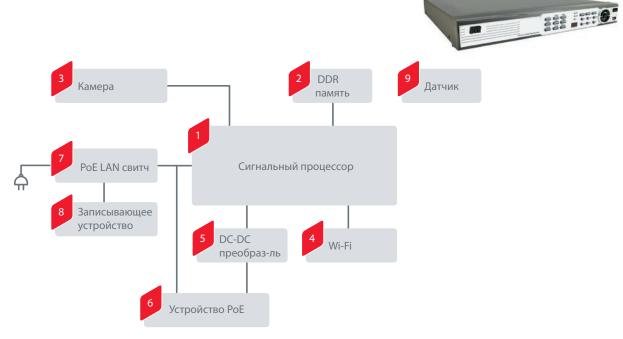
Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	M		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	4	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех			
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	-		

Управление освещением

RFID модули с I²C интерфейсом MAGICSTRAP LXMS серия

Пироэлектрические инфракрасные датчики Керамические резонаторы CERALOCK IRA серия

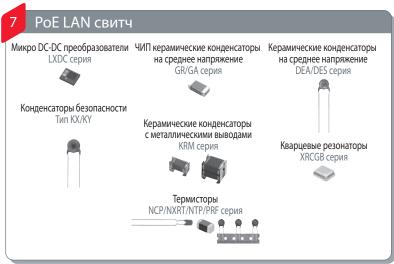
CSTLS/CSTCE/CSTCR серия



Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех			
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	î		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

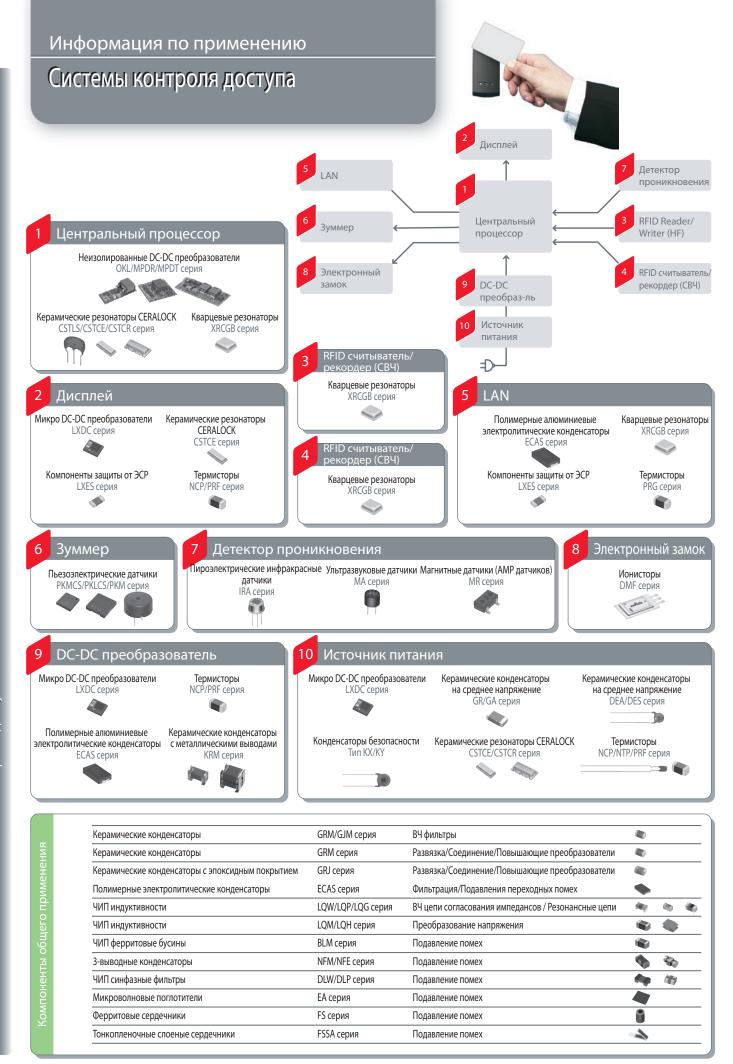
Информация по применению Освещение

Камеры видеонаблюдения



Микро DC-DC преобразователи LXDC серия

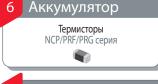
ЧИП индуктивности LQB серия

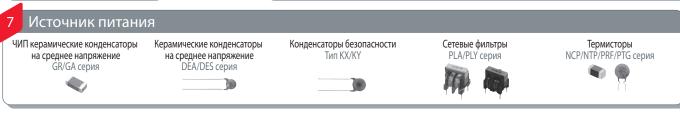


9 Датчик
Пироэлектрические инфракрасныедатчики
IRA серия

Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	8		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Электронные точки обслуживания


Bluetoothr - Wi-Fir Combo модули


NFC антенны

FLAN серия

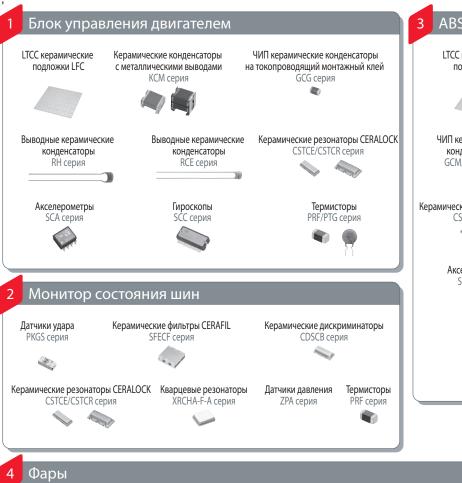
Подключение

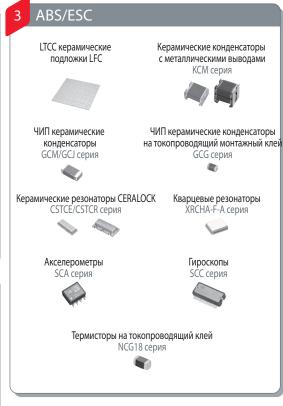
Wi-Fi модули

Bluetooth

модули

	Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Z Z	Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
e He	Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
MNG.	Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
	ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ero 	ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения			
ооще	ЧИП ферритовые бусины	BLM серия	Подавление помех			
9	3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
표	ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
힏	Микроволновые поглотители	ЕА серия	Подавление помех			
MOY	Ферритовые сердечники	FS серия	Подавление помех	8		
_	Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

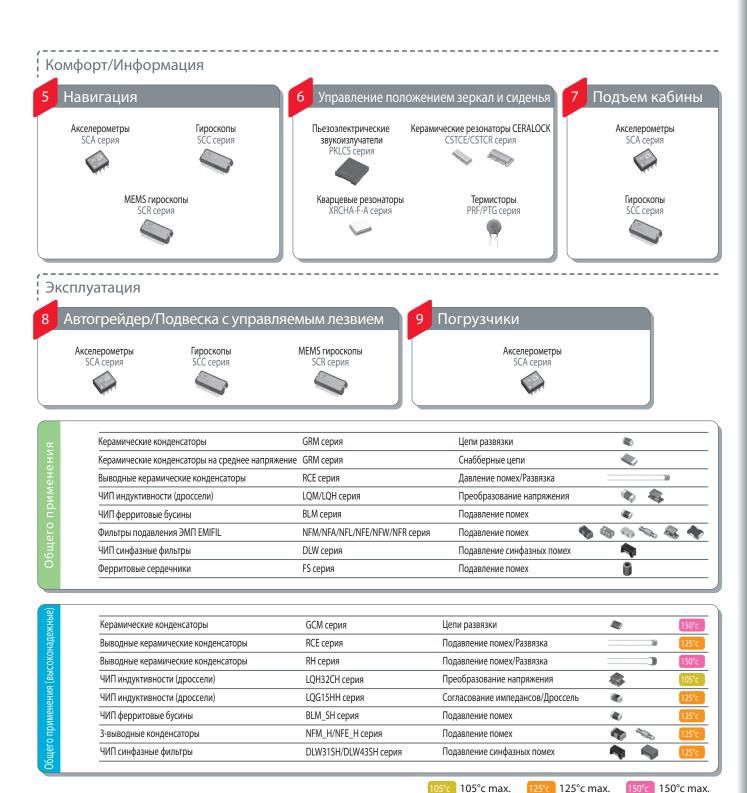

Bluetoothr Smart модули


LBCA/LBMA серия

Грузовой транспорт

Безопасность

ЧИП керамические конденсаторы на токопроводящий монтажный клей GCG серия


Керамические фильтры CERAFIL CSTCE/CSTCR серия

Кварцевые резонаторы XRCHA-F-A серия

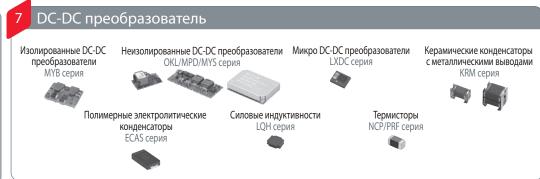
Термисторы на токопроводящий клей NCG18 серия

Прои

Промышленная автоматизация

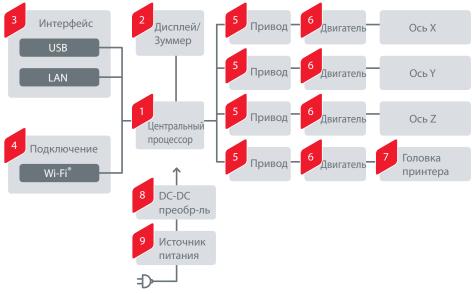
Термисторы

PRG серия


Компоненты защиты от ЭСР

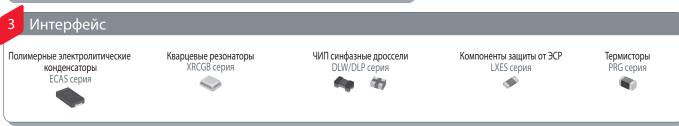
LXES серия

19



Керамические конденсаторы	GRM/GJM серия	ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи			
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	100		1
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	-	10	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	9		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

3D принтеры



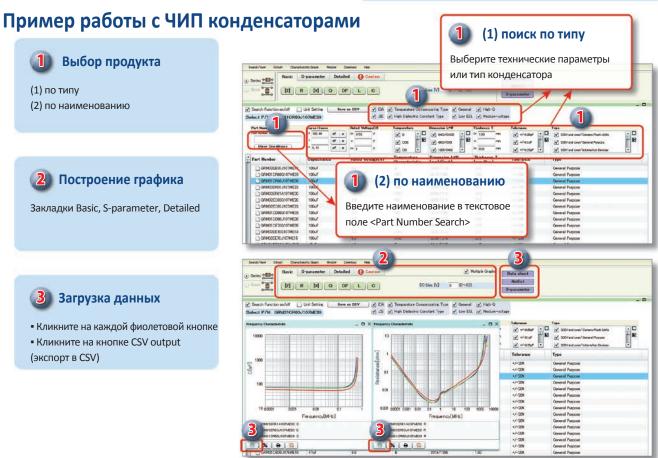
2 Дисплей/Зуммер

Керамические резонаторы CERALOCK
CSTLS/CSTCE/CSTCR серия


ОТВЕНИИ О

ИНформация по применению ЗD принтеры

130


Керамические конденсаторы	GRM/GJM серия	GJM серия ВЧ фильтры			
Керамические конденсаторы	GRM серия	Развязка/Соединение/Повышающие преобразователи			
Керамические конденсаторы с эпоксидным покрытием	GRJ серия	Развязка/Соединение/Повышающие преобразователи	4		
Полимерные электролитические конденсаторы	ECAS серия	Фильтрация/Подавления переходных помех	•		
ЧИП индуктивности	LQW/LQP/LQG серия	ВЧ цепи согласования импедансов / Резонансные цепи	(All)		(6)
ЧИП индуктивности	LQM/LQH серия	Преобразование напряжения		-	
ЧИП ферритовые бусины	BLM серия	Подавление помех			
3-выводные конденсаторы	NFM/NFE серия	Подавление помех	•	80	
ЧИП синфазные фильтры	DLW/DLP серия	Подавление помех	Ap.	御	
Микроволновые поглотители	ЕА серия	Подавление помех			
Ферритовые сердечники	FS серия	Подавление помех	î		
Тонкопленочные слоеные сердечники	FSSA серия	Подавление помех	1		

Программа для проектирования SimSurfing

http://www.murata.com/simsurfing/

Новейшее ПО для проектирования схем с конденсаторами, индуктивностями, фильтрами ЭМП, а также для эмуляции работы термисторов!

http://www.murata.com/simsurfing/

*Скриншот сделан в октябре 2014 г. Программное обеспечение часто обновляется.

Указатель

A			M				
AWG	LTCC (низкотемпературная керамика)			MA	Ультразвуковые датчики	58	
	Многослойные модули		73	MHM	Модели ионизатора lonissimo	74	
				MHR	Высоковольтные резисторы	34	
	В			MM	Высокочастотные коаксиальные разъемы (розетки)		
BLA	Шумоподавляющие фильтры (ферритовые бусины)		23	MPD	DC-DC преобразователи	66	
BLM	Шумоподавляющие фильтры (ферритовые бусины)			MPH	Высоковольтные источники питания		
BLO	Шумоподавляющие фильтры (выводные фильтры)			MPL	Высоковольтные источники питания		
BN	Шумоподавляющие фильтры (блоки)			MR	Магнитные датчики (AMR)	57	
BS	Магнитные датчики банкнот			MSH	Высоковольтные трансформаторы	68	
				MX	Высокочастотные коаксиальные разъемы (на кабель)		
	С			MY	DC-DC преобразователи		
CD	Керамические дискриминаторы	43	48	MZ	Микровентиляторы		
CE	Изоляторы				типровентилноры	, -	
CF	Керамические фильтры CERAFIL				N		
CL	Однослойные Microchip конденсаторы			NC	NTC термисторы 56	60	
CS	Керамические резонаторы CERALOCK			NF	Шумоподавляющие фильтры (ЧИП 3-выводные	, 00	
CJ	перимические резолиторы сеплеоск		37	141	конденсаторы, ЧИП LC/RC фильтры,		
	D				ЧИП EMIFIL) 24	25	
DE	Выводные керамические конденсаторы	17	20	NT	NTC термисторы		
DF	Диэлектрические фильтры GIGAFIL			NX	NTC термисторы 56		
DHK				INA	МТС Термисторы	, 01	
	Высоковольтные керамические конденсаторы				\cap		
DHR	Выводные керамические конденсаторы			OV	DC-DC преобразователи	-	
DHS	Высоковольтные керамические конденсаторы			OK	DC-DC преобразователи	00	
DL	Фильтры подавления помех (ЧИП синфазные фильтры)				Р		
DM	Ионисторы		69	21/6	•		
DS	Шумоподавляющие фильтры (выводные)		28	PKG	Датчики удара		
DXP	Балуны		50	PKB	Пьезоэлектрические излучатели		
DXP	Согласующие компоненты		51	PKL	Пьезоэлектрические зуммеры	70	
DXW	Балуны		50	PKM	Пьезоэлектрические зуммеры		
	г			PLA	Сетевые фильтры		
	E			PLH	Сетевые фильтры	28	
EA	Микроволновые поглотители		28	PLT	Фильтры подавления ЭМП		
ECAS	Полимерные алюминиевые конденсаторы		21		(ЧИП синфазные фильтры) 26		
	-			PLY	Сетевые фильтры		
	F			PR	PTC термисторы POSISTOR 56, 62		
FR	Датчики вращения		58	PT	PTC термисторы POSISTOR 56, 63	, 64	
FS	Ферритовые сердечники		28	PV	Потенциометры	35	
	6				6		
	G				R		
GA	ЧИП керамические конденсаторы			RC	Выводные керамические конденсаторы		
GC	ЧИП керамические конденсаторы		11	RD	Выводные керамические конденсаторы	15	
GJ	ЧИП керамические конденсаторы		. 6	RH	Выводные керамические конденсаторы	20	
GM	ЧИП керамические конденсаторы		. 7	RU	Тонкопленочные подложки RUSUB	55	
GQ	ЧИП керамические конденсаторы		6				
GR	ЧИП керамические конденсаторы	3	3, 7		S		
				SAE	ПАВ контуры	43	
	l			SAF	ПАВ фильтры для мобильных устройств	44	
IR	Пироэлектрические ИК датчики		58	SAW	ПАВ фильтры для мобильных устройств		
				SAY	ПАВ фильтры для мобильных устройств		
	K			SCA	Акселерометры		
KC	ЧИП керамические конденсаторы		14	SCA	Инклинометры		
KR	ЧИП керамические конденсаторы			SCC	Гироскопы		
	The state of the s			SCR	Гироскопы		
	L			SF	Керамические фильтры CERAFIL41		
LDB	Балуны		50	SV	Датчики вращения		
LDC	Согласующие элементы			3.	дат инит вращения	٠,	
LDD	ЧИП гибридные делители				T		
LDM	Балуны			TP	Керамические контуры	13	
LFB	ЧИП LC фильтры			TZ	Подстроечные конденсаторы		
LFC	LTCC многослойные модули			12	подстроечные конденсаторы	22	
LFC	гсс многослоиные модули		/3		V		
LFD	ЧИП дисплексоры		51	VF	EMIGUARD	20	
LFL				V٢	LIVINGUANU ———————————————————————————————————	20	
	ЧИП LC фильтры				Χ		
LL	ЧИП керамические конденсаторы			VD		40	
LQ	Индуктивности (дроссели)			XD	Кварцевые фильтры	48	
LXDC	Микро DC-DC преобразователи			XN	Кварцевые генераторы		
LXES	Устройства защиты от электростатики			XR	Кварцевые резонаторы	37	
LXMS	MAGICSTRAP			XT	Кварцевые генераторы	38	
LXWS	Модули беспроводной передачи энергии		76 74	7R	Пьезозпектомпеские пиэфозгмы	٦.	
. x H///			111		LIBERTORIER TORUS CRIME DIAZMOZEMEI		

ОФИСЫ

⚠Примечания

Запрещается использовать продукцию компании Murata для разработки, производства и обслуживания любой военной техники (орудия массового поражения – ядерное, химическое, биологическое или ракетное оружие) или устройств, предназначенных

для использования в военной технике.

- 2 Если вы планируете использовать нашу продукцию в приложениях, перечисленных ниже, пожалуйста, проконсультируйтесь с нашими торговыми представителями и инженерами по продукции. Такая продукция требует повышенной надежности во избежание причинения вреда жизни и здоровью пользователей и повреждения оборудования.
 - 1 Авиационное оборудование
 - 2 Авиакосмические приборы
 - 3 Оборудование для работы под водой
 - 4 Энергоблоки
 - Медицинское оборудование
 - **(6)** Транспортные средства (поезда, корабли, автомобили)
 - 7 Светофоры
 - (8) Приборы для предотвращения стихийных бедствий или профилактики преступности
 - 9 Оборудование для обработки данных
 - **10)** Другое оборудование соизмеримой сложности и ответственности

- Дата издания данного каталога март 2014 года. Информация, приведенная в нем, может быть изменена без предварительного уведомления. Перед размещением заказа, пожалуйста, обратитесь к нашим торговым представителям или инженерам по применению.
- 4 Ознакомьтесь с комментариями (треугольник с CAUTION) (для хранения, работы, пайки, монтажа), приведенными в каталоге
- Каталог содержит только основные характеристики на продукцию. Перед заказом ознакомьтесь с полной документацией.
- 6 Если не оговорено особым образом, компания не несет ответственности за любые конфликты, связанные с интеллектуальной и другими правами собственности, возникшие в процессе использования продукции компании или информации, представленной в каталогах. Никакая третья сторона не может использовать вышеперечисленные права без согласия производителя.
- Производственный процесс Murata не использует азоноразрушающие вещества, запрещенные Монреальским протоколом.

Murata Manufacturing Co., Ltd.

www.murata.com

Продукция

Компоненты и модули

